
  

   

85

Chapter 6 

The Use of the Biotic Index  
as an Indication of Water Quality 

Melvin C. Zimmerman 

Department of Biology 
Lycoming College 

Williamsport, Pennsylvania 17701 
 
 

Mel Zimmerman received his B.S. in Biology from SUNY-Cortland (1971) and     
his M.S. (1973) and Ph.D. (1977) in Zoology from the Miami University, Ohio.    
After completion of his Ph.D., he spent 2 years as a teaching post-doctoral fellow 
with the introductory biology course at Cornell University and is now an 
Associate Professor of Biology at Lycoming College.  While at Cornell, he 
co-authored  an  introductory  biology  laboratory  text  and  directed  several 
video programs of laboratory techniques.  He is a co-author of Chapter 6 of the 
second ABLE conference proceedings and Chapter 2 of the thirteenth 
proceedings.  His current research and publications are in such diverse areas as 
black bears and aquatic invertebrates.  In addition to introductory biology, he 
teaches ecology, invertebrate zoology, parasitology, and aquatic biology. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

© 1993 Melvin C. Zimmerman 
85 

R
 Association for Biology Laboratory Education (ABLE) ~ http://www.zoo.utoronto.ca/able

Reprinted from: Zimmerman, M. C. 1993. The use of the biotic index as an indication of water quality. 
Pages 85-98, in Tested studies for laboratory teaching, Volume 5 (C.A. Goldman, P.L.Hauta, M.A. 
O’Donnell, S.E. Andrews, and R. van der Heiden, Editors). Proceedings of the 5th Workshop/Conference 
of the Association for Biology Laboratory Education (ABLE), 115 pages. 
 

- Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm 
 

Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration 
has been given to safety, individuals performing these exercises must assume all responsibility for risk. 
The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety 
in connection with the use of the exercises in its proceedings volumes. 



86 Biotic Index 
 

 

Contents 

Introduction....................................................................................................................86 
Student Outline ..............................................................................................................87 
Notes for the Instructor ..................................................................................................95 
Literature Cited ..............................................................................................................96 
Appendix A: Data Form.................................................................................................98 

Introduction 

This exercise has six objectives: 

1. Learn about the food web, functional feeding groups, and diversity of a typical freshwater 
stream ecosystem. 

2. Understand how the biological and chemical traits of the stream change with pollution. 

3. Develop the concept of organisms as indicators of organic pollution and calculate the Biotic 
Index. 

4. Examine community concepts of species diversity. 

5. Use a dichotomous key to classify organisms. 

6. Finally, extend our investigative skills to combine field and laboratory methodology, data 
collection, and analysis into an interpretation of ecosystem events. 

 
The write-up of this laboratory is intended to serve not only as a basis for a laboratory in a 

general biology course for majors, but also provide enough information for an independent project 
or a general ecology laboratory.  The construction of the stream food web and Biotic Index has 
served as: (1) investigative independent exercises for general biology students at Cornell 
University and, (2) a formal laboratory in the general biology course at Lycoming College. 

The complete study (food web construction, measurement of BOD, coliforms, and 
chemical/physical parameters, and the determination of the Biotic Index and species Diversity 
Indexes) has served as a basis for a 2-week investigative laboratory in general ecology at 
Lycoming College.  When the complete laboratory is done, the first week is used by the class to 
collect all field samples and finish water chemical tests in the laboratory.  The second week is used 
to classify organisms and begin data analysis.  Students, as a class, finishing the entire study are 
then given 2 weeks to complete data analysis and summarize results in a paper written 
independently in the format of a scientific journal. 

When the laboratory is used as a 1-week exercise in general biology, field collected samples 
are brought into the laboratory and students classify organisms, construct a food web, calculate the 
Biotic Index, and discuss their results.  In conjunction with this laboratory, I assign either one of 
the following two articles by Cummins (1974, 1975a): Structure and Function of Stream 
Ecosystems or The Ecology of Running Waters: Theory and Practice.  If students are writing 
papers, additional articles are put on reserve in the library. 
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Student Outline 

Background 

As human populations have grown, more and more categories of pollution of our surface 
waters have occurred.  One of the most common pollution categories is organic pollution caused 
by oxygen-demanding wastes as domestic sewage, wood fiber from pulp and paper mills, effluent 
from food processing plants, and run-off from agricultural areas (especially hay, dairy, and cattle 
farms).  Dissolved oxygen is consumed either through chemical oxidation of these substances or 
through the respiratory processes of biological decomposition.  Decomposition of materials is a 
normal process in all aquatic ecosystems and is a function of decomposers such as bacteria and 
fungi.  These organisms metabolize the organic matter as an energy and nutrient source and utilize 
dissolved oxygen in the process.  However, serious consequences can result if these natural 
mechanisms are overloaded by large influxes of organic matter.  Severe oxygen depletion can 
result in the loss of desirable aquatic life and may produce an odorous anaerobic system.  
Although sewage may contain a variety of pollutants (i.e. heavy metals, pesticides), only the 
general impact of organic loading is considered in this exercise. 

The effects of oxygen-demanding wastes on a stream are depicted in Figure 6.1.  The severity 
and duration of the pollution episode depend upon many factors including amount of waste, size of 
stream, and temperature.  Biochemical Oxygen Demand (BOD) is a common measure of the 
strength of an effluent containing biodegradable organic matter.  BOD is defined as the total 
amount of oxygen required by microbes to decompose a given amount of waste.  BOD levels are 
high at the source of the effluent and gradually decrease over time and downstream as the waste is 
stabilized.  As dissolved oxygen (DO) is depleted, the macroinvertebrates (those invertebrates 
retained in a No. 30 sieve) and fish which require high concentrations may be eliminated and 
replaced by pollution-tolerant forms.  Algae may be eliminated at the outfall by high turbidity 
levels but also stimulated downstream by the release of nutrients from microbial activities.  
Eventually the waste is metabolized and microbial populations are reduced by organisms feeding 
on them.  The final step in the process of recovery is the reappearance of pollution-sensitive fish 
and invertebrate life. 

BOD values are routinely determined in laboratory tests of many types of waste-water.  
However, there is no short or simple way to measure BOD.  The standard test is a bioassay which 
extends over 5 days and is carried out within carefully defined conditions.  In addition, the BOD 
test and many other chemical/physical determinations of water quality, evaluates specific 
characteristics of the water only at the time of sampling and do not measure past short-term 
pollution stresses (perturbations).  This is why organisms, especially slow sessile aquatic 
invertebrates which cannot swim away from intermittent perturbations, can be used as biological 
indicators of water pollution because their presence or absence may reflect conditions not 
otherwise evident when the researcher checks the site.  Furthermore, they are probably best suited 
because they are numerous in almost every stream, are readily collected and identified, and can be 
classified as pollution sensitive (or in the case of organic pollution to be “tolerant”, “facultative” 
or “intolerant” of low dissolved oxygen conditions). 

It is a well known fact (see Figure 6.1) that pollution of a stream reduces the number of species 
of the system (i.e., Species Diversity), while frequently creating an environment that is favorable 
to a few species (i.e., pollution-tolerant forms).  Thus, in a polluted stream, there are usually large 
numbers of a few species, while in a clean stream there are moderate numbers of many species.  
For instance, many gill-breathing mayfly, stonefly, and caddisfly larvae can survive only where 
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there is abundant oxygen in the water.  Other invertebrates can tolerate low oxygen water because 
they breathe atmospheric oxygen via snorkel-like breathing tubes (i.e., the rat-tailed maggot) or 
have some other special adaptations like respiratory pigments which enable them to more 
efficiently obtain oxygen that is in low concentration (i.e., Tubifax worms and chironomid midge 
larvae). 
 

 
 
Figure 6.1.  Effects of organic pollution (i.e., raw sewage) on a stream ecosystem.  Adapted from 
Bartsch and Ingram (1975). 
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Because both pollution sensitive and tolerant forms are present in “clean” waters, it is the 
absence of the former coupled with the presence of the latter which may indicate damage.  This is 
the basis of the Biotic Index.  The Biotic Index (BI) is based on categorizing macroinvertebrates 
into categories depending on their response to organic pollution (i.e., the tolerance of various 
levels of dissolved oxygen; see Figure 6.2).  One of the most comprehensive of these indexes is 
the one proposed by the Hilsenhoff (1977) formula: 

N
a n  = BI ii∑

 
Where ni is the number of specimens in each taxonomic group, ai is the pollution tolerance 

score for that taxonomic group, and N is the total number of organisms in sample.  
Macroinvertebrates are given a numerical pollution tolerance score (ai) ranging from 0 to 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2.  General pollution tolerance for common aquatic organisms. 
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In 1987, Hilsenhoff reevaluated the pollution tolerance scores and expanded the range from 0 
to 10.   The value is based on field and laboratory responses of these organisms toward organic 
pollution.  Zero taxa are extremely intolerant of low dissolved oxygen; taxa with scores of 2 
through 9 are tolerant to varying degrees; taxa which can survive great amounts of pollution are 
scored 10.  A problem with the application of this form of the biotic index (BI) for general use is 
the requirement to identify the organisms to genus and/or species. 

In 1988, Hilsenhoff proposed a family-level biotic index (FBI).  The purpose of the FBI is to 
provide a rapid, but less critical, evaluation of streams and is not intended as a substitute for the BI 
when detailed taxonomic information is available.  The FBI uses the same formula as the BI but 
substitutes average pollution tolerance scores (ai) for a family instead of differences in species.  
FBI uses the same formula as the BI but substitutes average pollution tolerance scores (ai) for a 
family instead of differences in species.  Table 6.1 summarizes the family pollution tolerance 
scores (ai) for a variety of stream arthropods.  Table 6.2 summarizes ranges of FBI scores for a 
stream site water quality interpretation as proposed by Hilsenhoff (1988a, 1988b). 

In this laboratory/field exercise, you are asked to determine the water quality of stream sites 
based primarily on the family biotic index.  Additional support for your interpretation may come 
from analyses of species diversity, density, and/or analysis of chemical parameters.  You may also 
wish to examine the difference in functional feeding categories of the stream food web proposed 
by Cummins (1974, 1975a, 1975b) between sites of varying water quality. 

Materials (Students work in pairs) 

1. For collection of macroinvertebrates:  

 Surber stream-bottom sampler or D-frame aquatic nets (No. 30 sieve) 
 Small stiff “floor” brush and trowel 
 Bucket 
 Wide-mouth quart jar with lids 
 Grease pencils or labels 
 Blunt forceps 
 Formalin (neutral formalin made by saturating 37% formalin with calcium carbonate; make up 
final solution as 10%) 
 Hipboots (and trappers gloves if collection made during cold weather) 
 
2. For collection of stream depth, width and velocity data: 

 Metric tape 
 Meter stick 
 Float or cork 
 Stopwatch or watch with second hand or stopwatch and Gurley Pygmy Current Meter (Model 
625) 
 
3. For collection of water temperature and dissolved oxygen (DO): 

 Thermometer (°C) 
 Yellow Springs Instrument Co. (YSI) Oxygen Meter and Thermistor (Model 57) or similar 
meter kit or chemicals to determine DO by Winkler Method 
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Table 6.1.  Family-level pollution tolerance scores for the Hilsenhoff Biotic Index. 
Adapted from Bode (1988), Hilsenhoff (1988a, 1988b), and Lehmkuhl (1979). 

Plecoptera Capniidae 1, Chloroperlidae 1, Leuctridae 0, Nemouridae 2, Perlidae 
1, Perlodidae 2, Pteronarcyidae 0, Taeniopterygidae 2  

Ephemeroptera Baetidae 4, Baetiscidae 3, Caenidae 7, Ephemerellidae 1, 
Ephemeridae 4, Heptageniidae 4, Leptophlebiidae 2, Metretopodidae 
2, Oligoneuriidae 2, Polymitarcyidae 2, Potomanthidae 4, 
Siphlonuridae 7 

Tricorythidae 4 
Odonta Aeshnidae 3, Calopterygidae 5, Coenagrionidae 9, Cordulegastridae 

3, Corduliidae 5, Gomphidae 1, Lestidae 9, Libellulidae 9, 
Macromiidae 3 

Trichoptera Brachycentridae 1, Glososomatidae 0, Helicopsychidae 3, 
Hydropsychidae 4, Hydroptilidae 4, Lepidostomatidae 1, 
Leptoceridae 4, Limnephilidae 4, Molannidae 6, Odontoceridae 0, 
Philopotamidae 3, Phryganeidae 4, Polycentropodidae 6, 
Psychomyiidae 2, Rhyacophilidae 0, Sericostomatidae 3  

Megaloptera Corydalidae 0 , Sialidae 4 
Lepidoptera Pyralidae 5 
Coleoptera Dryopidae 5, Elmidae 4, Psephenidae 4 
Diptera Athericidae 2, Blephariceridae 0, Ceratopogonidae 6, Blood-red 

Chironomidae (Chironomini) 8, Other (including pink) Chironomidae 
6, Dolochopodidae 4, Empididae 6, Ephydridae 6, Psychodidae 10, 
Simuliidea 6, Muscidae 6, Syrphidae 10, Tabanidae 6, Tipulidae 3 

Amphipoda Gammaridae 4, Talitridae 8 
Isopoda Asellidae 8 
Acariformes 4 
Decapoda 6 
Gastropoda Amnicola 8  Bithynia 8, Ferrissia 6, Gyraulus 8, Helisoma 6, 

Lymnaea 6, Physa 8, Sphaeriidae 8 
Oligochaeta Chaetogaster 6, Dero 10, Nais barbata 8, Nais behningi 6, Nais 

bretscheri 6, Nais communis 8, Nais elinguis 10, Nais pardalis 8, Nais 
simples 6, Nais variabilis 10, Pristina 8, Stylaria 8, Tubificidae:  
Aulodrilus 8, Limnodrilus 10 

Hirudinea Helobdella 10 
Turbellaria 4 
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Table 6.2.  Water quality based on Family Biotic Index (adapted from Hilsenhoff, 1977). 
Biotic Index Water quality Degree of organic pollution 
0.00–3.50  Excellent No apparent organic pollution 
3.51–4.50  Very good Possible slight organic pollution 
4.51–5.50  Good Some organic pollution 
5.51–6.50  Fair Fairly significant organic pollution 
6.51–7.50  Fairly poor Significant organic pollution 
7.51–8.50  Poor Very significant organic pollution 
8.51–10.0  Very poor Severe organic pollution 

 
 
4. For collection/determination of other chemical/physical properties of water: 

 The HACH Portable Engineers' Water Test Laboratory (there are several models, which use 
either spectophotometers or colorimeters, to choose from) or similar portable kit is used for 
determination of: pH, total phosphate, turbidity, nitrate nitrogen, conductivity, nitrite nitrogen, 
and ortho-phosphate. 

 
5. For determination of BOD and coliforms: 
 HACH BOD Kit or Standard Methods analysis  
 Millipore Coli-count or HACH Coliform tube assembly 
 
6. For macroinvertebrate identification: 
 Enamel trays for sorting 
 Dissecting microscopes 
 Blunt and fine forceps 
 Dissecting pins 
 Medicine droppers 
 Small jars or vials 
 “Watch” glass 
 Manuals for identification of aquatic macroinvertebrates (suggested are Lehmkuhl, 1975, 

1979) 

Procedure 

For easier direct comparison and for purposes of statistical analysis, two riffle sections of the 
same stream (a “clean” water upstream site and a downstream polluted site) should be examined.  
Ideally, each site should be of the same stream order (see Cummins, 1975), and similar in width 
and depth.  If a Surber sampler is used, depth must be less than 1 foot.  For purposes of statistical 
analysis (non-parametric tests are most appropriate), at least six samples of each of the biological, 
chemical, and physical parameters described below should be collected from each site. 
 
At each site: 
 
1. Make some general observations about each site (i.e., type of surrounding vegetation, type of 

stream substrate). 
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2. At each of the riffle sites where benthic samples are to be collected with the Surber, wade into 
the water from downstream and place the net with its mouth facing upstream.  Lower the 
square-foot frame of the sampler onto the substrate and hold in place.  Pick up all rocks, and 
while holding them in the mouth of the net, brush them free of all organisms (allow the 
current to carry them into the net).  When done, discard each rock outside the frame.  When 
all rocks have been brushed, use a garden trowel to stir up the substrate within the square-foot 
frame.  Be sure that the stirring motion is toward the center of the frame so that organisms that 
are dislodged will be carried into the mouth of the net and not around it.  Attempt to stir this 
area thoroughly and to a uniform depth.  Empty contents of the Surber net into a labelled 
collecting jar.  To empty the Surber, the net must be turned “inside out” and organisms 
attached to the fabric must be picked from the net with forceps and placed into the jar.  Add 
sufficient 10% formalin or 70% ethanol to just cover substrate and organisms in the jar. 

 Note:  Accuracy of the biotic index depends on at least 100 organisms being processed from 
each sample.  A D-frame kick net can be used to collect a kick sample from each site to 
provide enough arthropods for analysis. 

3. Take measurements of stream temperature and DO at each site where benthic samples were 
collected. 

4. Determine current velocity at each site where benthic samples were collected.  If a current 
meter is not available, velocity can be found by dropping a fisherman's float and recording, 
with a stopwatch, the time required to travel 3 meters.  Record an average of three 
determinations as meters per second (m/sec).  If a current meter is available, determine both 
surface and bottom velocity (this value is closer to the organisms' habitat).   

 Note:  It is a well known fact that stream velocity influences macroinvertebrate diversity and 
density.  Therefore, if differences between sites are to be attributed to “pollution” it is 
important that no statistical difference in velocity exists between sites. 

 An estimate of the volume of flow at each site can be determined by the method outlined in 
Robins and Crawford (1954).  Choose a cross-section of the stream where current and depth 
are most uniform and measure the width.  Then divide this width into three equal segments.  
Next record the midpoint of each segment and determine the velocity of the surface current 
(as described above).  Determine the volume of flow (R) for each segment of the cross-section 
by the following formula: 

V a D W = R  
Where a is a bottom factor constant (0.8 for rocks and coarse gravel; 0.9 for mud, sand, 

hardpan, or bedrock), W refers to the width of segment, D is the depth of the segment, and V 
equals the surface current velocity taken at the midpoint of the segment.  Total volume of flow is 
determined by adding the R values for the three segments. 

5. Collect water samples (approximately 500 ml) at each site where benthic organisms were 
collected and transport back to the laboratory for chemical/physical analysis.  Follow directions 
in the HACH kit for tests.  Determine average values for each site. 

6. If coliform and BOD samples are to be collected, follow directions outlined in specific kits 
used. 

7. In the laboratory, sort and identify the invertebrates in each sample to the family level of 
classification.  To do this, place the contents of a jar in a large flat pan marked with a grid (a 30-
cm by 45-cm pan with a 5-cm grid is satisfactory).  Number the square in the grid and select a 
starting square for each sample by picking a number from a table of random numbers.  Remove 
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all arthropods from the starting square and then remove arthropods from each successively 
higher numbered square until a total count of 100 organisms are collected. 

8. Count all arthropods in a sample and calculate the density (organisms/m2) of organisms for 
each sample as well as an average for both sites.  The Surber samples an area of 0.09 m2. 

9. Calculate both the Shannon-Wiener and Simpson Diversity Indexes.  If this analysis is to be 
done, and you do not have the time or expertise to identify each organism to species, you can 
use the operational taxonomic unit (OTU) approach.  Continue to sort organisms of the same 
family, separated in step 7 above, into individuals that look the same (i.e., seem to be members 
of the same species).  These groups of “look-alikes” are called OTU species and can be used for 
calculation of species diversity.  The Shannon-Wiener Index (H′), adopted from information 
theory, is currently one of the most widely used diversity measures.  The basic formula is: 

⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛′ ∑ N
n    

N
n- = H ii

s

1 = i

log
 

Where ni is the number of individuals in the ith species, N equals the total number of 
individuals in the sample, and s equals the total number of species in the sample.  This index, 
which usually varies from 0 to 5, shows how successful one would be at guessing the next bit of 
information (i.e., species) after knowing the first.  The Simpson Index (C), with values ranging 
from 0 to 1, is the probability that if two selections are made randomly from a collection of 
organisms, they will be individuals of the same species.  This index is calculated as follows: 

  
N
n  - 1 = C i

2s

1 = i
⎟
⎠
⎞

⎜
⎝
⎛∑

 
Determine the average species diversity indexes for each site and compare. 

10. Summarize results of the water quality of the two stream sites in a paper written in the format 
of a scientific journal. 

11. (Optional)  Compare the functional feeding groups between the two sites (percent shredders, 
collectors, scrapers, predators; see Cummins, 1974, 1975a, 1975b; Merrit and Cummins, 
1984).  The paper by Cummins and Wilzbach (1985) provides an excellent, and easy, key to 
determine functional feeding groups.  Has the water quality affected them? 
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Notes for the Instructor 

Scheduling 

If the distance to sampling sites is short, and with division of labor, the field collection of 
biological, chemical, and physical samples can be done in a 3-hour lab period.  I often send part of 
the class back to the laboratory to run chemical tests with the HACH kit.  I use a second laboratory 
period to identify organisms and begin data analysis.  A reference collection of “typical” 
macroinvertebrates speeds up identification.  Furthermore, additional time is saved if students 
have the opportunity to practice tests with the HACH kit.  I generally give students 2 weeks to 
write up their papers. 

Equipment 

1. Information on HACH equipment can be obtained from HACH Chemical Co., P.O. Box 389, 
Loveland, CO 80537, or P.O. Box 907, Ames, IA 50010. 

2. Surber samplers and nets are available from Wildlife Supply Co., 301 Cass St., Saginaw, MI 
48602. 

3. Millipore “coli-count” water tester is available from Millipore Corp., Bedford, MA 01730. 

4. Dissolved oxygen meter is available from Yellow Springs Instrument Co., Yellow Springs, OH 
45387. 

5. Current meter is available from Teledyne Gurley, 514 Fulton St., Troy, NY 12181. 

Biotic Index 

Additional background information and data interpretation of the Hilsenhoff Biotic Index can 
be obtained in Hilsenhoff (1977) and Lehmkuhl (1979).  Other types of biotic indexes, which use 
aquatic insects, are described in Beck (1954), Chutter (1972), Denoncourt (1975), Heister (1972), 
Rolan (1973), and Scott (1969). 

Species Diversity Indexes and Water Pollution 

Additional background information and interpretation can be obtained from Allan (1975), 
Bradt (1977), Dennis and Patil (1977), Godfrey (1978), Olive and Dambach (1973), and Ransom 
and Prophet (1974).  In general, species diversity should be reduced by organic pollution.  A 
simple diversity index is described by Cairns et al. (1968). 

Interpretation of Chemical/Physical Data 

Additional background information and interpretation of chemical/physical data can be 
obtained from Standard Methods (American Public Health Association, 1990) or from Bartsch and 
Ingram (1967), Hynes (1960, 1972), Sawyer and McCarthy (1967), or Welch (1980). 
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Identification Keys and Functional Feeding Groups 

In addition to Lehmkuhl (1975, 1979), there are good keys in Merritt and Cummins (1984), 
Pennak (1978), Pekarsky et al. (1990) and Thorpand and Covich (1991).  Functional feeding 
groups are described in Cummins (1974, 1975a, 1975b), Cummins and Wilzback (1985), and 
Merritt and Cummins (1978).  Students can look up family (and/or genera) of each organism and 
determine if it is a predator, collector, scraper, or shredder. 
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APPENDIX A 
Form for Enumeration/identification of Aquatic Organisms 

 
Sample type: Periphyton or Benthos   Date: ___________________ 
Water Temperature:  _______________  Velocity: _______________  
Slide or Container No:  ___________ 
 
Phylum (Division) -  Phylum (Division) - 
Class -  Class - 
Order -  Order - 
Family -  Family - 
Genus -  Genus - 

Number in sp. 1 -  Number in sp. 1 - 
sp. 2 -  sp. 2 - 
sp. 3 -  sp. 3 - 
sp. 4 -  sp. 4 - 

   
Phylum (Division) -  Phylum (Division) - 
Class -  Class - 
Order -  Order - 
Family -  Family - 
Genus -  Genus - 

Number in sp. 1 -  Number in sp. 1 - 
sp. 2 -  sp. 2 - 
sp. 3 -  sp. 3 - 
sp. 4 -  sp. 4 - 

-   
Phylum (Division) -  Phylum (Division) - 
Class -  Class - 
Order -  Order - 
Family -  Family - 
Genus -  Genus - 

Number in sp. 1 -  Number in sp. 1 - 
sp. 2 -  sp. 2 - 
sp. 3 -  sp. 3 - 
sp. 4 -  sp. 4 - 

   
Phylum (Division) -  Phylum (Division) - 
Class -  Class - 
Order -  Order - 
Family -  Family - 
Genus -  Genus - 

Number in sp. 1 -  Number in sp. 1 - 
sp. 2 -  sp. 2 - 
sp. 3 -  sp. 3 - 
sp. 4 -  sp. 4 - 

 




