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Abstract: 
Significant correlations between variables in biological systems often occur. However correlation 
does not imply direct causation as most associations arise through multiple interactions. Students 
will be introduced to correlation and be able to calculate simple and partial correlation coefficients. 
They will understand how to distinguish between conspicuous, directional and fluctuating 
asymmetry. They will gather data on (1) Fiddler Crabs where they will make hypotheses about the 
correlation between body size and large and small cheliped size in males, and (2) human total 
fingerprint ridge counts and use an index based on the correlation coefficient to test for fluctuating 
asymmetry. 
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Introduction 
 

Associations between variables are common in biological systems. A “natural” measurement 
of this association is the correlation coefficient, and significant (i.e. non-zero) correlations occur in 
morphology, ecology and genetics. However correlation does not imply direct causation as most 
associations between variable arise through multiple causes and interactions. In this laboratory 
students will gain some appreciation of the conceptual basis of correlation and how to use and 
interpret the linear correlation coefficient correctly. They will be introduced to the basic theory of 
correlation and be able to calculate the Pearson Product Moment Correlation Coefficient, compare 
two correlation coefficients and to be able to calculate and use partial correlation coefficients. They 
will also be introduced to asymmetry in biological systems, and understand how to distinguish 
between conspicuous asymmetry, directional asymmetry and fluctuating asymmetry. They will then 
apply this theory in two laboratory exercises where they will gather data on (1) Fiddler Crabs where 
they will make hypotheses about the correlation between body size and large and small cheliped size 
in males. They will test these hypotheses by making measurements on preserved specimens. (2) 
They will then gather and analyze class data on human total fingerprint ridge counts and use an 
index based on the correlation coefficient to test for fluctuating asymmetry.  
 

Student Outline 
Correlations between variables are common in all areas of biology, for instance 

morphological measurements on the same organism often show significant (i.e. non-zero) 
correlations. Similarly the activity or behaviour of animals can often be correlated to environmental 
or ecological factors. However it is easy to fall into the trap of thinking that correlation proves 
causation. Although correlation is a very useful tool for investigation in biology, it must be 
interpreted correctly and with caution. This laboratory exercise will help you to do this. 
 

Objectives 
1. To understand the conceptual basis of correlations in biological systems. 
2. To understand the use and the limitations of correlation analysis in biology. 
3. To learn how to calculate the Pearson Product Moment Correlation Coefficient and to test for 

its significance. 
4. To learn how to compare two correlation coefficients. 
5. To understand how partial correlations arise and to be able to calculate partial correlation 

coefficients. 
6. To be able to distinguish between conspicuous asymmetry, directional asymmetry and 

fluctuating asymmetry. 
7. To be able to calculate two indices of fluctuating asymmetry and to understand the role of the 

correlation coefficient in analyzing asymmetry. 
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 The conceptual basis of correlation  
If we have measurements of two variables we are often interested to discover if there is an 

association between them. An obvious first step is to calculate the correlation coefficient, and this is 
usually the Pearson Product Moment Correlation Coefficient, although in some circumstances 
Kendall’s Rank Correlation Coefficient may be more appropriate. If we find a significant correlation 
then this may lead us to hypothesize about a causal relationship between the variables (Sokal and 
Rohlf, 1981). However the finding of a significant correlation does not imply that one variable is the 
direct cause of the other; for instance they may both result from a common cause. Variables may be 
related to one another in a variety of ways, some quite complex. Figure 1, adapted from Sokal and 
Rohlf (1981), shows some possible ways in which the observed correlation between two variables 
may arise.  
 
           X2 
 X1  X2  X1       
       X3  X1  X3 
 
     X2      X4 

 
(a)    (b)    (c) 

 
 
 X1  X3  X1  X3  X1  X3 
        
       X4 
   X4        X4 
       X5 
 
 X2  X5  X2  X6  X2  X5 
 
 

(d)    (e)    (f) 
 
Figure 1. Different explanations for the observed correlation r12 between X1 and X2 (modified from 
Sokal and Rohlf, 1981). It is assumed that there are only linear relationships between variables. 
 
The situation shown in Fig. 1 (a), where one variable is entirely determined by one other, is likely to 
be rare. Even situation (b), where both X1 and X2 are completely determined by a common cause is 
unlikely. In both (a) and (b) r12 must equal 1. In reality situation (c) is more likely to apply. An 
example of this would be the correlation between the age (X2) and weight (X1) of an animal (Sokal 
and Rohlf, 1981). Other factors (X3, X4) will inevitably also affect the animal so ) r12 will be less 
than 1. Most correlations in nature probably have an even more complex basis as illustrated in (d), 
(e) and (f). 
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2. Correlation versus Regression 
The correlation coefficient only measures the degree of association between two variables and 

implies no simple causal relationship between the two (see above). However in many instances, 
there may be a known or hypothesized functional dependence of one variable on the other. What this 
means is that the magnitude of one of the variables – the dependent variable (Y) – is determined by 
(is a function of) the magnitude of the second variable – the independent variable (X). In 
experimental situations the independent variable is controlled completely by the investigator and so 
the exact effect of incrementally changing the independent variable can be quantified. This is 
represented by the regression equation: ii bXaY +=ˆ , where iŶ  is the predicted value of Y, a is the Y-
intercept and b the slope of the regression line (note a and b are sample estimates of the parameters α 
and β). We are said to have regressed Y on X. The example shown in Fig. 2 (below) is from Zar 
(1984). As temperature increases the O2 consumption decreases in a linear fashion. There obviously 
must be a direct cause-effect relationship in this case.  
 
 

 
  

Figure 2. Regression of oxygen consumption of birds (Y) on temperature (X). Data from Zar 
(1984). 

 
Regression is an extremely useful and widespread statistical technique in biology and in the sciences 
generally. Nevertheless there are many situations where there is no clear-cut cause-effect 
relationship between variables and so correlation must be used instead. 
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3. Measuring correlation 
(a) Bivariate Data 

If we have paired or bivariate data, i.e. a measurement of two variables (X, Y) on an individual, 
then there may be an association or a correlation between them. 

 
The Linear Correlation Coefficient (or Pearson Product Moment Correlation Coefficient) r 
measures the strength of the linear relationship between the paired X and Y values in a sample. The 
sample statistic r estimates the parameter ρ (rho).  It is assumed that the variates follow the bivarate 
normal distribution. 
 
(b) The Linear Correlation Coefficient 
The correlation coefficient is given by the formula: 
 

    
ji

ij
ij σσ

σ
ρ =   (1) 

 
where   ρij = the (parametric) covariance of Xi and Yj 
  ρi = the standard deviation of Xi 
  ρj = the standard deviation of Yj 
 
The corresponding sample statistic is: 
 

   
∑ ∑
∑=

22 yx

xy
r   (2) 

 
where ∑ ∑ −−= ))(( YYXXxy ji , which is the covariance of X and Y. Note that this is how 
covariance is defined, but you should NOT actually calculate the covariance this way, instead use 
the computational formula: 
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We also have the sum of squares: 
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The null hypothesis tested is that there is no linear correlation, i.e. HO: ρ = 0, and the HA: ρ ≠ 0. The 
test is usually two-tailed, but a one-tailed test can be done. The formulas use summation notation. 
See Appendix A for a summary. 
 
(c)  Properties of r 

1. The values of the correlation coefficient can only vary from minus one to plus one; 
 -1 ≤ r ≤ 1 
 

2. The value of r does not change if all values of either variable are converted to a 
different scale. 
 

3. The linear correlation coefficient only measures the strength of a linear relationship. 
 

4. It does not matter which variable you designate as “X” and which as “Y” 
 
 
 
4. Correlations in biological systems 

 
(a) Morphological Correlations. 

Measurements made on two different structures on the same individual will often be correlated, 
but as illustrated in Fig. 1, it is unlikely that one variable will be the direct cause of the other. For 
example consider two size measurements of bumble bee (Bombus spp.) queens. One is the length of 
the radial cell (mm) in the wing (Fig. 3) the other is the wet weight (mg). Figure 4 shows a scatter 
plot of these variables for 25 queens of the species Bombus bifarius.  
 

 
 

Figure 3. Drawing of a forewing of a queen bumble bee (Bombus rufocinctus) showing the 
radial cell. 
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(i) Examples 
Radial cell length X (mm), vs. body mass Y (mg) of 25 queens of the bumble bee Bombus 
bifarius. 
 

 
 

Figure 4. A scatter plot of radial cell length and body mass measured on 25 queens of the 
bumble bee Bombus bifarius. 

 
 
As can be seen from the figure there is an obvious association between the variables, but we 
need to test this statistically to determine if the association is significant and to calculate a 
quantitative measure of the intensity of the association. We do this by calculating the sample 
correlation coefficient, r, and using it to test the hypothesis that the parametric value of the 
correlation is significantly different from zero. Formally we state: the null hypothesis HO: ρ 
= 0, versus the alternative hypothesis HA: ρ ≠ 0. 
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The calculations are as follows: 
 

X (mm) X2 Y (mg) Y2 XY 
3.44 11.8641 293.0 85849.00 1009.222 
3.37 11.4093 289.6 83868.16 978.2044 
3.37 11.4093 267.6 71609.76 903.8933 
3.46 12.0177 308.3 95048.89 1068.773 
3.22 10.3827 265.4 70437.16 855.1778 
3.46 12.0177 327.6 107321.8 1135.6800 
3.40 11.5600 295.9 87556.81 1006.0600 
3.31 10.9634 296.4 87852.96 981.4133 
3.17 10.0982 305.6 93391.36 971.1289 
3.31 10.9634 269.5 72630.25 892.3444 
3.28 10.8167 263.8 69590.44 867.6089 
3.46 12.0177 302.6 91566.76 1049.0130 
3.51 12.3279 327.3 107125.30 1149.1870 
3.42 11.7116 327 106929.00 1119.0670 
3.33 11.1111 304.1 92476.81 1013.6670 
3.62 13.1204 316.3 100045.70 1145.7090 
3.46 12.0177 289.9 84042.01 1004.9870 
3.51 12.3279 353.2 124750.2 1240.1240 
3.28 10.8167 282.8 79975.84 930.0978 
3.24 10.5264 248.2 61603.24 805.2711 
3.40 11.5600 295.8 87497.64 1005.7200 
3.35 11.2597 324.2 105105.60 1087.871 
3.40 11.5600 394.5 155630.30 1341.3000 
3.24 10.5264 291.3 84855.69 945.1067 
3.33 11.1111 293.1 85907.61 977.0000 

     
Σ = 84.44 285.4982716 7533 2292668 25483.63 

 
n = 25 

ΣX  = 84.44   ΣY  = 7533   ΣXY  = 25483.63 
 

ΣX2  = 285.4982716   ΣY2  = 2292668 
 

Σx2  = 22825.14  Σy2  = 0.25815  Σxy  = 38.83133 
 
Therefore, 

506.0
)25815.0)(14.22825(

83133.38
22

===
∑ ∑
∑

yx

xy
r  

 
This is the calculated r. To test HO: ρ = 0 vs. HA: ρ ≠ 0 we compare the calculated value with the 
critical value from Table B1 (Appendix B); Critical value:  r0.05, 23 = 0.396 
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Therefore we reject HO and we can say that there is a significant linear correlation at the α = 0.05 
level.  
Consider another species, B. nevadensis (n = 20); 
 

RC length (mm) Mass (mg) 
4.77 767.0 
4.64 632.3 
4.64 813.9 
4.46 630.7 
4.75 756.0 
4.73 796.3 
4.68 780.6 
4.68 771.0 
4.66 841.6 
4.64 786.2 
4.53 731.0 
4.59 776.0 
4.95 740.0 
4.51 728.6 
4.75 824.2 
4.87 775.2 
4.82 823.6 
4.82 825.3 
4.57 822.9 
4.75 1137.0 

 
 
ΣX  =  93.88   ΣY  =  15759.4  ΣXY  = 74050.97 
 

ΣX2  = 441.004636   ΣY2  = 12608722.14 
 

Σx2  =  __________  Σy2  =  ____________ Σxy  = _____________ 
 
 
Therefore, 
 

________
________)(_______)(

__________
22

===
∑ ∑
∑

yx

xy
r  

 
 

Critical value:  r0.05, 18 = 0.444 
 
What do you conclude about the significance of the correlation? 
Figure 5 shows data from both species plotted together. 
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Figure 5. A scatter plot of radial cell length and body mass measured on 25 queens of the 
bumble bee Bombus bifarius and 20 queens of the larger species B. nevadensis. 

 
 
(ii) Comparing Two Correlation Coefficients 
 

Sometimes it is interesting or important to compare two correlation coefficients to see if the 
strength of an association is the same or different in two different populations. To do this first 
involves transforming each r to a z value: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
i

i
i r

r
z

1
1

ln5.0  (6) 

 
This can be calculated directly, or obtained from Table B2 (Appendix B). 
 

Then, 

   
21

21
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−
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We test the hypothesis 
 

HO: ρ1 = ρ2 
HA: ρ1 ≠ ρ2 

 
Example: 
We have two species of bumble bees. The correlation between radial cell length and body mass has 
been calculated for each sample. We want to determine if the two correlation coefficients are 
significantly different or not. 
 

  B. bifarius B. huntii 
 
  r1 = 0.51 r2 = 0.59 
 
  z1 = 0.563 z2 = 0.678 
 
  n1 = 25  n2 = 19 

 
 therefore 

  32856.0
319

1
325

1
21

=
−

+
−

=−zzσ  

 
 and so the calculated  
 

  350012.0
32856.0

115.0
32856.0

678.0563.0 −=−=−=z  

 
Since this is a z-test (Snedecor and Cochran, 1980) the critical value: z0.05(2) = ±1.96 we fail to reject 
the null hypothesis, and so we conclude that the two correlation coefficients are not significantly 
different.  
 
This means that we can calculate a common correlation coefficient (this is just the weighted average 
of the two): 

   
)3()3(
)3()3(

21

2211

−+−
−+−

=
nn

znznzw  

 

 Therefore 61629.0
1922

)678.019()563.022( =
+

×+×=wz  

 
Thus rw = 0.55 
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Exercise:  
Compare the correlation coefficients calculated for B. bifarius and B. nevadensis. 
 

Bumble bees 
There are about 250 species of bumble bees worldwide (Williams, 2008) and about 50 of 
these occur in North America. They are all placed in the single genus Bombus Latreille. 
They are large, colourful and conspicuous insects. They are primitively eusocial as 
opposed to the advanced eusocial honeybees and ants. A typical colony is shown below. 
 

 
 

A Bombus huntii colony reared in the laboratory. The queen is the large bee in the centre 
and the others are her daughters – the workers. In this, as in many species, there is a 
considerable size dimorphism between the queen and the workers. (Photograph by the 
author). 
 

Colonies are annual, being founded by overwintered queens emerging from hibernation 
in the spring. They will have mated the previous fall. They find a nest site (usually an 
abandoned rodent nest) and rear the first brood of workers by themselves. After the first 
workers emerge, the colony enters the social stage for 2 – 3 months. Towards the end of 
summer the colony switches to young queen and male production; the foundress queen 
and workers eventually die as do the males after leaving the colony and mating with 
young queens. 
Classification: 

Kingdom Animalia  
Phylum Arthropoda  
Class  Insecta 
Order  Hymenoptera 
Family Apidae 
Subfamily Apinae 
Tribe   Bombini 
Genus  Bombus 
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(b) Ecological Correlations. 
  
(i) Foraging activity in bumble bees 

Correlations abound in ecological situations where a host of factors, many unknown, will 
influence a measured variable either directly or indirectly. Young and Owen (1989) studied the 
foraging activity of bumble bee (Bombus spp.) workers in a subalpine meadow at an elevation of about 
1980 m in the Kananaskis Mountain range of the Southern Canadian Rockies in western Alberta. The 
number of bumble bees observed foraging in three 10m x 10m study plots was recorded at 30 
minutes intervals over five days. The only forage plant available was Yellow Hedysarum 
(Hedysarum sulphurescens) and environmental conditions as well as nectar measurements were 
recorded. The data were pooled over the study days to give a total (n) of 68 observations. Workers of 
seven bumble bee species occurred in the meadow during the study period: B. occidentalis, B. bifarius, 
B. flavifrons, B. frigidus, B. mixtus, B. melanopygus, B. sylvicola. The latter three accounted for over 
80% of the total, and the data for the last two were combined because of their morphological, 
ecological and taxonomic similarity. 
 
Table 1 (below) shows that foraging activity is strongly positively correlated with both temperature 
and nectar concentration, and to a lesser extent with the amount of sugar, but this is still highly 
significant.  
 
Table 1. Correlations coefficients (r) between foraging activity of B. melanopygus and B. sylvicola 
(numbers of bees of both species combined), ambient temperature, and nectar production in 
Hedysarum sulphurescens for the data pooled over all study days (n = 68 observations). 
 

*P < 0.05, **P < 0.02, ***P < 0.01, ****P < 0.001, ns  - not significant. 
 

Although temperature clearly has the strongest influence, the correlations suggest that sugar 
concentration, on its own, also has a major effect. However, this may not be this simple, because we 
also have to consider the effect of temperature on sugar concentration. Table 2 (below) gives the 
correlations between the environmental variable (temperature and humidity) and the nectar variables. 
 
 
 
 
 
 
 
 
 

Variable Foraging Activity
Temperature (ºC) 0.433**** 
Concentration (%) 0.345*** 
Sugar (mg) 0.292** 
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Table 2. Correlations between environmental variables and nectar production in Hedysarum 
sulphurescens for the data pooled over all study days (n = 68 observations). Product-moment 
correlation coefficients (r) are given. 
 
 Humidity Sugar Conc. (%) Amount of 

Sugar (mg) 
Nectar Volume  
(μl) 

Temperature 
(ºC) 

-0.802**** 0.320**** 0.262* --------- 

Humidity  -0.534**** -0.308**** 0.106 ns 
*P < 0.05, **P < 0.02, ***P < 0.01, ****P < 0.001, ns  - not significant. 
We can postulate a causal pathway connecting temperature, humidity and sugar concentration; 
humidity is inversely related to temperature, and in turn sugar concentration is inversely related to 
humidity, thus leading to a positive correlation between temperature and concentration.  
   
 

Temperature       
 
      
  -ve         +ve (+ 0.320)      
       (- 0.802) 
            
      -ve (- 0.534) 

Humidity    Sugar Concentration 
 
 

Figure 6. Causal pathways and correlations between environmental variables and  
sugar concentration in H. sulphurescens. 

            
In order to discover the direct effect of sugar concentration on the foraging activity of the bees, we 
need to calculate the partial correlation coefficient between foraging activity and sugar 
concentration.  
 
(ii) Partial correlations 
If there are three variables, then there are three simple correlations between them; ρ12, ρ13, ρ23 
(Snedecor and Cochran, 1980). Simple correlations are the type we have dealt with so far. However, 
the partial correlation coefficient ρ12.3 is the correlation between variable 1 and 2 in individuals all 
having the same value of variable 3; i.e. the third variable is held constant so that only 1 and 2 are 
involved in the correlation (Snedecor and Cochran, 1980).  
The sample estimate r12.3 of ρ12.3 is:  
 

)1)(1( 2
23

2
13

231312
3.12

rr
rrrr
−−

−=    (8) 

 



302 ABLE 2009 Proceedings Vol. 31 Owen 
 

 

This can be tested for significance using the Table B1 (Appendix B) of the Critical Values for the 
Pearson Correlation Coefficient, but using (n - 3) degrees of freedom rather than (n - 2) as for a 
simple correlation coefficient (Snedecor and Cochran, 1980) 
We can now calculate the estimate (rAC.T) of the partial correlation coefficient between foraging 
activity (A) and sugar concentration (C) with the temperature (T) held constant: 
 
 

242.0
)320.01)(433.01(

)433.0)(320.0(345.0
22. =

−−
−=TACr  

 
The values of the simple correlations from Tables 1 and 2 are substituted into equation (8). The 
degrees of freedom, df = 68 – 3 = 65, and therefore from Table B1 (Appendix B) we can conclude 
that the partial correlation is significant (P < 0.05), but just so. The effect of sugar concentration on 
its own is clearly much less that the original simple correlation coefficient from Table 1, would 
indicate. 
 
Now we can construct a more complete picture of the interactions between the various factors that 
appear to influence bumble bee foraging activity in this subalpine meadow: 
 
    +ve (+ 0.363) 
 Temperature      Foraging Activity 
 
      
  -ve        +ve (+ 0.320)     +ve (+ 0.242) 
       (- 0.802) 
           -ve (- 0.534) 
   Humidity   Sugar Concentration 
 

Figure 7. Causal pathways and correlations between environmental variables, sugar  
concentration and foraging activity. 

 
 
Exercise:  

a. Calculate the estimate (rAS.T) of the partial correlation coefficient between foraging 
activity (A) and amount of sugar (S) with the temperature (T) held constant: 

b.  
 
 

_______
)_____1)(433.01(

)433.0(____)(_____
22. =

−−
−=TSCr  
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What do you conclude? 
 

 
 

c. In Figure 7 (above) the correlation coefficient between temperature and foraging 
activity is different from that given in Table 1. What is this correlation coefficient? 
Try to calculate it. 

 
 

_______
)_____1)(____1(

_)(____)(__________
22

=
−−

−=r  

(c) Genetic Correlations 
 

Another example of correlation in nature is the correlation between relatives in groups or 
populations. Correlation is one way of measuring the relatedness between individuals. There are 
other methods, one being regression.  The following simple derivation of the correlation between 
parent and child is modified from Li (1976). If we consider a single autosomal gene (i.e. one that is 
not sex-linked) with two alleles (A and a) in a random mating population, then there nine different 
mating types in total, see Table 3 below: 
 
Table 3. Parent–Offspring chart for an autosomal gene in a population assumed to be in Hardy-
Weinberg equilibrium. 
 

Mating  Offspring 
Mother Father Frequency AA Aa aa 

AA AA p4 p4   
AA Aa 2p3q p3q p3q  
AA aa p2q2  p2q2  
Aa AA 2p3q p3q p3q  
Aa Aa 4 p2q2 p2q2 2p2q2 p2q2

Aa aa 2pq3  pq3 pq3 
aa AA p2q2  p2q2  
aa Aa 2pq3  pq3 pq3

aa aa q4   q4

 
 
This table can be condensed to give the joint distribution of values for a single parent (mother or 
father) and child (Table 4). 
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Table 4. Parent-child correlation in a random mating population. 
 

Parent Child  
  AA Aa Aa Total Frequency 
 X 2 1 0  

AA 2 p3 p2q 0 p2 
Aa 1 p2q pq pq2 2pq 
aa 0 0 pq2 q3 q2 
      

Total Frequency p2 2pq q2  
Each genotype can be assigned an X value (X in the parent, X’ in the child), 2, 1 or 0. We calculate 
the correlation rXX’:  we have pX 2= , VAR(X) = 2pq (the Binomial Variance) which are the same in 
the parent and the child. Covariance is defined as )')((' XXXXCOV −∑=    
 
 
Therefore,  
 

COV(X,X’)  = 4p3 + 4p2q + pq – (2p)2 = 4p3 + 4p2q + pq – 4p2 
  = 4p2(p + q – 1) + pq 
  = pq 

thus, 
 

2
1

2)(
)',(

)'()(
)',(

' ===
pq

pq
XVar

XXCOV
XX
XXCOVrXX σσ

  

 
as σ(X) = σ(X’) in an equilibrium population. Note that the correlation is independent of the gene 
frequency in the population. 
 
 
The correlations between some other relatives are given in Table 5 below: 
 

Table 5.  Correlations between relatives based on autosomal genes. 
 

Relationship  Correlation 
Parent-Child r = ½ 
Identical Twins r = 1 
Full Sibs  r = ½ 
Half-Sibs r = ¼ 
Grandparent-Grandchild r = ¼ 
Uncle-Nephew r = ¼ 
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5. Correlation and asymmetry 
 

(a) Asymmetry 
Dr. A. Richard Palmer of the University of Alberta is an expert on the study of asymmetry in 

animals, and this brief introduction to asymmetry is largely based on his work, but see Palmer (1994, 
2008) for a detailed discussion. The majority of animals are bilaterally symmetrical, with paired 
internal organs and paired appendages. However the symmetry often is not exact or “perfect”. There 
are two general classes of asymmetry; conspicuous and subtle (Palmer, 2008).  Conspicuous 
asymmetries are very obvious; an example is the extreme difference in size between right and left 
claws in some crabs, as shown by the Fiddler Crab (Uca spp.). You will observe this in the first 
laboratory exercise. However many animals exhibit a less obvious, but still definite, type of 
asymmetry that can only be quantified in a sample of individuals, and thus statistical methods must 
be used to analyze it (Palmer, 1994). Measurements are made on a structure on the right (R) and left 
(L) sides of each individual in the sample and an index of asymmetry is then calculated. Palmer 
(1994) distinguishes between different types of asymmetry. In this laboratory we will only be 
concerned with fluctuating asymmetry, but is important to understand the difference between this 
and directional asymmetry. I have taken the definitions of each directly from Palmer (1994): 
 
“Directional asymmetry (DA) - a pattern of bilateral variation in a sample of individuals, where a 
statistically significant difference exists between sides, but the side that is larger is generally the 
same; detected by statistical tests for departures of mean R - L from zero.”  Palmer (1994). 
 
 
         0 
 

 
              R - L 
 
 Figure 8.  Directional asymmetry. Modified from Palmer Figure 1 (1994). 
 
 
 
“Fluctuating asymmetry (FA) - a pattern of bilateral variation in a sample of individuals where the 
mean of R - L is zero and variation is normally distributed about that mean; a pattern of bilateral 
variation that may arise via many processes.”  Palmer (1994). 
 
          0 



306 ABLE 2009 Proceedings Vol. 31 Owen 
 

 

 
   

         
    ‘stability’ 
 
 
      ‘noise’ 
 

 
R - L 

 
Figure 9.  Fluctuating asymmetry. Modified from Palmer Figures 1 and 2 (1994). 

 
Fluctuating asymmetry is often used as an indicator of developmental stability (Palmer, 1994) – see 
Fig. 9. Greater developmental stability will result in greater symmetry, i.e. less asymmetry. 
 
(b)    FA Indices 

Palmer and Strobeck (1986) list 13 indices of fluctuating asymmetry. The first 10 (FA1 – FA10) 
apply only to single traits, the other three are based on multiple traits per individual. In the second 
laboratory exercise you will calculate FA1 and FA9.  
 

FA1 = mean│R – L│   (10) 
 
This is just the average of the absolute differences between the right and left sides. It is intuitively 
obvious and easy to calculate, although it will be very biased if there is directional asymmetry 
present, and it is sensitive size-dependence of │R – L│ (Palmer, 1994). Palmer (1994) notes that it 
is probably the best index for moderate to large (30+) sample sizes. 
 
 FA9 = (1 – r2)   (11) 
 
This is based on the correlation between right and left sides, and represents the percentage bilateral 
variation not due to positive correlation (Palmer, 1994), Figure 10 (below). It is easily computed and 
it is not biased by DA, however it is very dependent on overall trait size variation in the sample 
(Palmer, 1994). Palmer (1994) recommends that it only be used in conjunction with other indices. 
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        Explained (r2) 
       
 

L 
 
       
      Unexplained (1 - r2) 
     
 

 
 

R 
 

Figure 10. (modified from Figure 3 of Palmer, 1994). Hypothetical correlation between 
measurements on a structure on the right and left sides of an organism. FA9 is a measure of 
the amount of variation that is not explained by the linear correlation.  

 
The correlation coefficient squared (r2) is also called the Coefficient of Determination and is 
usually reported in regression studies as it gives a quick indication of the amount of variation 
explained by the regression as opposed to that unexplained. FA9 obviously has a non-linear 
relationship to r (Fig. 11). 
 
 

 
 

Figure 11.  FA9 (1 – r2) as a function of the correlation coefficient, r. 
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6. Laboratory Exercises 
 

(a) Conspicuous asymmetry and correlation: Fiddler crabs 
Fiddler crabs (genus Uca, see Textbox) are very interesting because of the conspicuous 

asymmetry exhibited by the males (Fig. 12).  
 

 
Figure 12. Uca pugnax.  
From: De Kay (1844) in Rosenberg (2007). 

 
True crabs have five pairs of limbs and four pair are used for walking, these are the ambulatory legs. 
The two clawed limbs are called the chelipeds. On male fiddler crabs, the larger cheliped is called 
the major cheliped, and the smaller is called the minor cheliped. Female fiddler crabs have two small 
chelipeds that are similar to the minor cheliped in the males (Rosenberg, 2007). Both chelipeds grow 
allometrically with respect to carapace size (Huxley, 1932), but each has a different growth 
trajectory (Rosenberg 1997). The major cheliped is used in antagonistic (male-male combat) and 
courtship behaviours (Takeda and Murai, 1993). In some species there is additional asymmetry, as 
the side bearing the major cheliped has larger ambulatory legs and this is related to the type of 
courtship waving display (Takeda and Murai, 1993). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fiddler Crabs: 
This information is from Rosenberg (2007) www.fiddlercrab.info 
 
Classification: 

Kingdom Animalia  
Phylum Arthropoda  
Class  Crustacea  
Sub-class Malocostraca  
Order  Decapoda  
Infraorder Brachyura  
Superfamily Ocypodoidea  
Family  Ocypodidae  
Subfamily Ocypodinae 
Genus  Uca 

 
There are 97 recognized species/subspecies in the genus Uca. 
The common English name “Fiddler Crab” comes from the feeding of the 
males, where the movement of the small claw from the ground to its 
mouth resembles the motion of a person moving a bow across a fiddle 
(the large claw). 
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Laboratory exercise: 
You will measure the carapace width and the lengths of the major and minor chelipeds in the sample 
of male Fiddler Crabs provided. You will then calculate the product moment correlation coefficient 
(r) between carapace width and the claw lengths. 
 

Question: Which correlation do you predict to be greater and why? 
State this as a hypothesis.  

 
Procedure: 

a. Measure large claw and small claw lengths (Fig. 13) and carapace width (Fig. 14) as 
explained by the laboratory instructor. 

 
b. Plot a scatter diagram for carapace width vs. major cheliped length and for carapace width 

vs. minor cheliped length. 
 

c. Calculate correlation coefficients and test for significance. 
 

d. State your conclusions. 
 

 
Figure 13.  The major and minor chelipeds of a typical male Uca crab. 

 

 
 

Figure 14. The carapace of a typical Fiddler Crab. 
(Modified from Rosenberg 2007). 
 



310 ABLE 2009 Proceedings Vol. 31 Owen 
 

 

(b) Fluctuating asymmetry: Human fingerprint ridge numbers.  
The individuality of human fingerprints has been recognized at least since the work of Francis 

Galton, and many studies have been carried out on inheritance of ridge patterns. Since the dermal 
ridges develop during the embryonic period and remain constant throughout the life of the 
individual, any environmental influences must be exerted in early embryogenesis. 
 
In this exercise you are going to examine the correlation between ridge counts of individual fingers 
of right and left hands, and calculate two indices of fluctuating asymmetry.  
 
There are three major groups of dermal ridge patterns: (a) arches, (b) loops, and (c) whorls (see 
Appendix C).  
 

• The arch is the least frequent pattern, subdivided into two groups, plain (the ridges rise 
slightly over the middle of the finger) and tented (the ridges rise to a point in the center).  
 

• The loop pattern is more complicated. It consists of a core and a tri-radius (a point where 
three ridge groups meet at angles of about 120 degrees). The core is a ridge surrounded by 
areas of ridges that turn back on themselves. Loops are classified as radial or ulnar depending 
on the orientation of the core ridge. Radial loops have a triradius that is on the side of the 
little finger, with the loop opening towards the thumb. The ulnar loop has a tri-radius that is 
on the side of the thumb, with the loop opening towards the little finger.  

 
• The whorl pattern on the other hand, has two tri-radii with the ridges inside the whorl 

consisting of a number of different patterns. 
 
The Total Ridge Count (TRC) is the sum of ridge counts on all fingers of both hands. In a study by 
Holt (1968), the average TRC for males was found to be 145 and for females it was found to be 126.  
Holt (1956) obtained the following correlations (r ± S.E.) of total finger-ridge counts between 
parents and offspring:  
 
  Father - Child:  r = 0.50 ± 0.04  
  Mother - Child: r = 0.49 ± 0.04  
 
 How do these actual correlations compare with the theoretical correlations between relatives 
calculated in section 4 (c) above? What does this say about the inheritance of total fingerprint ridge 
count? 
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(1) Data Collection: 
 

(i) Determine your ridge counts for each finger of both hands.  Arches have a ridge count 
of zero. For loops, count the number of ridges between the tri-radius and the center or 
core of the pattern. For whorls, a ridge count is made from each tri- radius to the 
center of the fingerprint and the higher of the two possible counts is recorded. To 
determine your TRC add together each of your individual ridge counts. 
 

(ii) Enter your data on the class Excel spreadsheet. 
 

(2) Analysis: 
 

(a) Correlation 
 
 (i) Graph a scatter plot for each finger. 
 

(iii) Compute the Pearson Product Moment Correlation Coefficient (r) for each finger. 
 
(iv) Construct a matrix of the correlation coefficients: 
 

 T 1 2 3 4 
T ---- rT1 rT2 rT3 rT4 
1  --- r12 r13 r14 
2   --- r23 r24 
3    --- r34 
4     --- 

 
 

(v) Compare all the correlation coefficients with each other; i.e. do all 10 pairwise 
comparisons. What do you conclude? 

 
 
(b) Fluctuating Asymmetry 
 

(i) Calculate FA9 (1 – r2) for each finger. 
 

(ii) Calculate FA1 the absolute difference, ∆, in ridge counts, │R – L│, for each finger. 
 

(iii)Calculate the mean and SE of FA1. 
 

(iv) What do you conclude? 
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Materials 
 No expensive or sophisticated equipment is required. It is useful, although not essential, to 
have a computer available for the entry of the class data into an Excel spreadsheet. 
 
(a) Fiddler crabs: 

You can use either preserved specimens from a biological supply company, or if you can 
collect them yourself that would be ideal.  
 
1. Preserved Fiddler Crabs Wards Natural Science (http://wardsci.com/) 

  Catalog: 68 W 2792 Jar of 10 Can $10.94 
  Website: 68 V 2792 Jar of 10 Can $8.75 
 

2. Rulers – measurements can be made to the nearest mm with a regular plastic ruler. This is 
quite good enough for the purposes of this lab.  

  
 
(b) Fingerprints: 
 A simple ink pad can be used; alternatively ink strips are more convenient: 

Fingerprint ink strips Wards Natural Science (http://wardsci.com/) 
  Catalog: 15 F 3612  Package of 200 Can $33.50 
  Website: 15 V 3612  Package of 200 Can $26.50 
 
 
 
Notes for the Instructor 
 This lab can be used as is, or parts of it can be taken and modified as desired depending on 
the course. It does not matter whether the students have taken statistics or not. If they have, then a 
review of the theory will not hurt, and they will see some applications. If they have not then the 
notes and exercises should be a sufficient introduction. My overall objective in this lab is to 
stimulate students to think and question. The actual results do not matter in themselves, and this lab 
will always “work”. The emphasis should be on constructing and testing hypotheses and if they turn 
out to be wrong then that is how science proceeds.  

Fiddler crabs: The exact points measured (Figs. 13 and 14) can easily be decided upon. A 
discussion should be initiated by the instructor to bring the class to a consensus about the 
(biological) hypothesis regarding which claw should show the highest correlation with carapace 
width. The laboratory instructor should read the paper by Rosenberg (1997). It is important to realise 
that “The two functions of the major cheliped, display and combat, do not necessarily have the same 
morphological requirements.” (Rosenberg 1997). It can be argued either way. In any case the 
statistical hypotheses will be HO: ρ1 = ρ2 and HA: ρ1 ≠ ρ2. Some sample data is given in Table 6 
(below). This was collected by a zoology class using preserved specimens from Wards Natural 
Science. 
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  Table 6. Some example Fiddler Crab data. All measurements are in mm. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Human fingerprint ridge numbers: Everyone is always interested in themselves, and it is 

quite striking how much variation there is even in a small class. The exercise gives a lot of practice 
calculating and comparing correlation coefficients. It should illustrate the point that it is surprising 
how much analysis can be done with even a relatively small amount of biological data. The results 
can be discussed in some different ways depending on the interests of the instructor. The meaning of 
fluctuating asymmetry could be the discussion, and here it is probably a good idea to stress two 
important point made by Palmer (1994); (1) that for valid conclusions measurements must be very 
accurate, and (2) one must be very careful in drawing sweeping conclusions from studies such as 
these. Otherwise the inheritance of human fingerprint ridge number can be discussed in light of the 
genetic correlations. 

 
 
 

 

Crab 
ID 

Carapace 
width 

Large 
claw 

length 

Small 
claw 

length 
1 1.9 3.4 0.8 
2 2 3.2 0.7 
3 1.9 3 0.8 
4 1.9 3.2 0.8 
5 1.8 2.9 0.7 
6 1.7 2.9 0.7 
7 1.7 2.8 0.6 
8 1.7 2.5 0.7 
9 1.7 2.6 0.7 

10 1.9 2.6 0.9 
11 1.6 2.7 0.8 
12 2.1 3.9 0.7 
13 1.7 2.6 0.5 
14 2.1 3.1 0.8 
15 1.8 3.3 0.5 
16 2.1 3.5 0.8 
17 1.7 2.8 0.7 
18 2.05 3.6 0.8 
19 1.8 3.1 0.8 
20 2 3.5 0.8 
21 1.7 2.7 0.7 
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Appendix A:  Summation Notation 
 
The symbol Σ is used to mean “the sum of”, and the quantities to be added immediately follow the Σ. Thus, 
ΣX represents the sum of the “x-values”, i.e. the sum of a set of numbers labeled X. These can be integers: 

  ∑
=

=++++=
5

1

1654321
x

X  

A function of x can follow Σ,  

∑
=

=++++=
5

1

222222 5554321
x

X  

or  ∑
=

−=−+−+−+−=−
3

0
2)23()22()21()20()2(

x
X  

In these examples, X is called the “index of summation”. There is one term of the sum for each value of the 
index of summation.  
 
Different indices of summation may be used. Given an arbitrary set of numbers, for instance 3, 5, -2, 4, 7, 
let X1 represent the first number 3, 
     X2 represent the second number 5, etc. 
then the sum can be written, 

  54321

5

1
XXXXXX

i
i ++++=∑

=

 

In this case the index of summation is i, which is indicated by putting i, under the Σ. 
e.g. 

 38)42()45()43()4()4()4()4( 2222
3

2
2

2
1

3

1

2 =−−+−+−=−+−+−=−∑
=

XXXX
i

i  

 
The index of summation normally takes all integral values, from the one under the Σ to the one on top of the 
Σ, 
e.g. 

 1110543

11

3

... XXXXXX
i

i +++++=∑
=

 

 
Sometimes, when the range of the index of summation is clear from the context, some information may be 

omitted: ∑
i

iX (or even ∑ iX ) indicates the sum over all I for which xi is defined. The range may also be 

indicated in other, self-explanatory ways, such as ∑
<5i

iX . 

 
 
 
Rules of Operation: 

1.  ncc
n

i
=∑

=1
, c is any constant. 
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 The sum of a constant, c, is the constant times the number of terms in the sum, 
 e.g. 

 124333333
4

1

=×=+++=∑
=i

 

 

2.  ncXcX
n

i
i

n

i
i +=+ ∑∑

== 11
)(  

 e.g. 

 )3333()4253()34()32()35()33()3(
4

1

+++++−+=+++−++++=+∑
=i

iX  

          22121043 =+=×+=∑ iX  

 NOTE: do not confuse this expression with ∑ =+=+
i

iX 133103  

 

3.  ∑∑
==

=+++=+++=
n

i
inn

n

i
i XcXXXccXcXcXcX

1
2121

1
)...(...)( , 

 where c is a constant and a common factor. 
 
4.  Sometimes two or more numbers, Xi, Yj, say are associated with each value of the index i.  

 ∑∑∑ +=++++++=+
=

jinn

n

i
ji YXYXYXYXYX )(...)()()( 2211

1
 

 e.g. 
  i  Xi Yj (Xi + Yj) 
 
  1 3 -4 -1 
  2 2 -1   1 
  3 5   0   5 
  4 -4 -1 -5 
  5 -1 5  4 
   5 -1 4 
 
The “mean” of the numbers, X1, X2, …Xn is denoted by X and is defined by 
 

  ∑
=

=
n

i
iX

n
X

1

1
, hence XnX i =∑ . 
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Appendix B: Statistical Tables 
 
Table B1.  
Critical Values of the Pearson Product Moment Correlation Coefficient, r 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
*Degrees of Freedom; for a sample size n, df = n - 2. 

 
Note: HO: ρ = 0, versus HA: ρ ≠ 0, reject HO if the absolute value of r is greater than the 
critical value in the table. 

df* α = 0.05 α = 0.01
3 0.878 0.959 
4 0.811 0.917 
5 0.754 0.875 
6 0.707 0.834 
7 0.666 0.798 
8 0.632 0.765 
9 0.602 0.735 
10 0.576 0.708 
11 0.553 0.684 
12 0.532 0.661 
13 0.514 0.641 
14 0.497 0.623 
15 0.482 0.606 
16 0.468 0.590 
17 0.456 0.575 
18 0.444 0.561 
19 0.433 0.549 
20 0.423 0.537 
23 0.396 0.505 
25 0.381 0.487 
30 0.349 0.449 
35 0.325 0.418 
40 0.304 0.393 
45 0.288 0.372 
50 0.273 0.354 
60 0.250 0.325 
70 0.232 0.302 
80 0.217 0.283 
90 0.205 0.267 

100 0.195 0.254 
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Table B2.  
Table of z = (½)ln[(1+r)/(1-r)] to transform the correlation coefficient. 
 

r 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 
0.1 0.100 0.110 0.121 0.131 0.141 0.151 0.161 0.172 0.182 0.192 
0.2 0.203 0.213 0.224 0.234 0.245 0.255 0.266 0.277 0.288 0.299 
0.3 0.310 0.321 0.332 0.343 0.354 0.365 0.377 0.388 0.400 0.412 
0.4 0.424 0.436 0.448 0.460 0.472 0.485 0.497 0.510 0.523 0.536 
0.5 0.549 0.563 0.576 0.590 0.604 0.618 0.633 0.648 0.662 0.678 
0.6 0.693 0.709 0.725 0.741 0.758 0.775 0.793 0.811 0.829 0.848 
0.7 0.867 0.887 0.908 0.929 0.950 0.973 0.996 1.020 1.045 1.071 
0.8 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 1.422 

           
0.90 1.472 1.478 1.483 1.488 1.494 1.499 1.505 1.510 1.516 1.522 
0.91 1.528 1.533 1.539 1.545 1.551 1.557 1.564 1.570 1.576 1.583 
0.92 1.589 1.596 1.602 1.609 1.616 1.623 1.630 1.637 1.644 1.651 
0.93 1.658 1.666 1.673 1.681 1.689 1.697 1.705 1.713 1.721 1.730 
0.94 1.738 1.747 1.756 1.764 1.774 1.783 1.792 1.802 1.812 1.822 
0.95 1.832 1.842 1.853 1.863 1.874 1.886 1.897 1.909 1.921 1.933 
0.96 1.946 1.959 1.972 1.986 2.000 2.014 2.029 2.044 2.060 2.076 
0.97 2.092 2.109 2.127 2.146 2.165 2.185 2.205 2.227 2.249 2.273 
0.98 2.298 2.323 2.351 2.380 2.410 2.443 2.477 2.515 2.555 2.599 
0.99 2.646 2.700 2.759 2.826 2.903 2.994 3.106 3.250 3.453 3.800 
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Appendix C: Scoring Fingerprints 
 
Examples of the three basic fingerprint patterns: 
 

 
 

(a) Arch. (no triradius) There is no line of count and the score is 0.  
 

 
 

(b) Loop with (one triradius). The triradius is on the left at the junction of three ridge systems. The white line 
joining the point of the triradius to the centre of the loop illustrates the method of ridge counting. The 
number of ridges cutting the line is 13. 
 

 
 

(c) Whorl (two triradii). The white lines are two lines of count, one from each triradius to the centre of the 
whorl. The ridge count on the left of the pattern is 17, that on the right is 8. The higher count is used. 


