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Students from a wide range of academic programs (science, arts, engineering, nursing, kinesiology, and so on) take 
Introductory Biology at Dalhousie University. We want to make sure that all of our students can benefit from the 
class, while also making sure that they are properly prepared for upper-year biology classes. Introducing students 
to basic statistical techniques important in biology, such as the chi-square test and comparing means using 95% 
confidence intervals, presents a challenge: how can we teach these skills to students from a broad range of back-
grounds, while keeping the focus on biological (rather than purely statistical) concepts during class time? During 
this workshop, I’ll share some hi-tech and low-tech solutions to this issue. Making use of technologies such as 
Camtasia Studio software and tablet PCs, I produced short pre-lab videos that students could watch on the course 
website to help them prepare for using statistical techniques in their lab exercises; during the lab, students could 
also consult a short stats-skills document included in the lab manual (please see the Supplemental Materials section 
for links to videos and to the Stats Primer document). We’ll also look at how these videos, documents and exercises 
can be adapted for use in online courses. Workshop participants will have the opportunity to try out some of the 
tools used for making the videos, and to share their perspectives and ideas for successful integration of statistical 
techniques in biology labs and classrooms.
A basic guide to statistics begins on the next page. Addition-al supplemental materials for this workshop can be 
accessed through the following link:

© 2011 by Gillian Gass

Introduction

Link to Supplemental Materials: www.ableweb.org/volumes/vol-32/gass/supplement.htm
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Appendix: Statistics in Introductory Biology
 In virtually every published primary research article in science, the Results section will contain the results of a number of 
statistical tests performed on the data collected by the researchers. Scientists use statistics to demonstrate mathematically that 
their results (for example, that plants treated with Fertilizer A grew larger than plants treated with Fertilizer B) are meaningful. 
For example, a biologist might weigh the plants in the two groups and find that the average weights calculated for each group 
were different values. The researcher would not stop there, but would then want to find out whether that the difference observed 
between the two groups is a legitimate or significant one (Fertilizer A really does promote plant growth better than Fertilizer B), 
rather than just an accident of chance (that is, the plants chosen for measurement in treatment A just happened to be heavier than 
the plants chosen for measurement in treatment B, even though there was no real difference in weights caused by the fertilizer 
used). Another biologist might have used a hypothesis to generate a prediction of the frequency of a particular phenotype in 
the offspring of a cross between two plants. When he or she actually performs that cross by breeding the plants together, do the 
frequencies match what was predicted? If they don’t match exactly, are they close enough, or do the expected and the observed 
differences differ significantly?

 In this Appendix, you will learn the basic statistical techniques that you will need to use in your laboratory activities. More 
advanced biology classes make use of more advanced statistical techniques, but many of these techniques are based on the same 
concepts you will use in your labs this year. 

There are three sections to this Appendix: 
 I.  Basic descriptive statistics: mean and standard deviation

 II. Statistical tests: the chi-square test

 III. Standard error and 95% confidence intervals

I.  Basic Descriptive Statistics: Mean and Standard Deviation

 When a group of measurements are taken, we often want to be able to characterize that group using descriptive statistics: for 
example, what was the middle or average weight of a plant in that group? How much did individual plants in that group tend to 
differ in weight from one another? 

 A common measure of the middle or average value used in biology is the mean. You have likely calculated means in second-
ary school math: the mean is found by adding up all of the observed values, then dividing by the number of observed values. 
The number of observations or data points is referred to as n. The Greek letter sigma (∑) indicates that you should sum up 
whatever comes immediately after the sigma. We can represent the procedure for finding the mean like this:  

mean	=	∑observed	values	/	n.

In spreadsheet programs such as Microsoft Excel or Google Docs Spreadsheets you can calculate the mean using the “=AVER-
AGE” formula.

 The variability of the data set (how much the values tended to differ from the mean) is described using the standard devia-
tion. Together, the mean and the standard deviation tell you about the distribution of your observations: what value they cluster 
around, and how narrow or wide that cluster is. The larger the differences between each observation and the mean, the larger 
the standard deviation. The procedure for finding the standard deviation of a sample is more complex than the procedure for 
finding the mean. Some values will fall below the mean (resulting in a negative number), while some values will fall above the 
mean (resulting in a positive number), so the values need first to be squared so that all of the differences will be positive, then 
a square root taken. Here is the formula describing this procedure:    

standard	deviation	=	√	(∑	(observed	value	–	sample	mean)2	/	n-1)

 You can use the “=STDEV” formula in spreadsheet software to calculate the standard deviation. You will need to know what 
the mean and standard deviation tell you about your set of data. We will build on this knowledge: you will learn how to use n 
and standard deviation to calculate a related value called standard error, so that when graphing your data you can quickly as-
sess whether the means of two groups are likely to be significantly different, as in the case of the Fertilizer A and B treatments 
described above. 
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II. Statistical Tests: The Chi-Square Test

 You will carry out and interpret a statistical test called the chi-square (χ2) test of goodness of fit. This test will allow you to 
test hypotheses by comparing your predictions to your observations, as in the plant cross example described above. On the next 
page, you will find complete instructions for carrying out and interpreting the chi-square test. This test is just one of a very wide 
range of statistical tests used in science, and if you take upper-year courses in biology you will likely encounter many different 
statistical tests. However, these tests tend to share some common features:

• The purpose of the test is to help you decide whether or not to reject some hypothesis. The hypothesis itself will differ
depending on the study being performed and the statistical test being used, but at the end of the test you should be able 
to say whether the hypothesis should be rejected or not. Notice that we do not say that the hypothesis is “supported” or 
“proven” simply that we fail to reject it.

• At the end of the mathematical operations involved in the test, you have computed what is called a test statistic. In the
chi-square test, the test statistic is the χ2 value that you calculate by adding up the squared differences between observed 
and expected values divided by the expected value; other types of tests (the Student’s t-test or the Mann-Whitney U test, 
for example) have their own test statistics arrived at by their own procedures.

• Each test also requires that you find the number of degrees of freedom, which is related to the number of different cat-
egories being studied. Together, the test statistic and the degrees of freedom value will allow you to interpret the results of 
your test. When the test statistic and degrees of freedom have been calculated, you use these values to consult statistical 
tables (on paper or in computer databases) specific to each statistical test. In your chi-square test, the degrees of freedom 
value tells you which row of the table to look in. When you find your test statistic (or the nearest values to your test sta-
tistic) in this row, you then look to the top row of the table to find the corresponding p-value.

• The p-value is what helps you decide whether or not to reject your hypothesis. It is a probability with a value of between
0 and 1: the probability that the difference you are looking at is due to chance alone. In the chi-square test, the p-value 
tells you how likely it is that the differences between your expected and observed values are due to chance alone, rather 
than these differences being due to a faulty hypothesis that should be rejected. The p-value indicates whether the differ-
ence between the two things you are comparing is likely significant, or if the distance is instead non-significant – that is, 
due only to chance.

• You must decide what p-value will function as the cut-off line or threshold between significant or non-significant differ-
ences. We will use p < 0.05 is used: if your chi-square value corresponds to a p-value of less than 0.05, then we interpret 
that to mean that the probability that the differences are due to chance alone is too small to worry about, and as such we 
say that the differences are significant and reject our hypothesis. However, 0.05 is not the only possible threshold to use: 
some people might decide that p = 0.1 is sufficient, while others might decide that p = 0.05 isn’t strict enough, and choose 
a smaller value such as p = 0.01. For this reason, the p-value is always stated explicitly when the results of a statistical 
test are given.

How to Perform the Chi-Square Test

 The chi-square test is a test of goodness of fit: how well do the observations or measurements that you made fit with what 
you predicted that you would observe? For example, in a laboratory exercise you will be using Mendelian ratios to predict the 
number of corn kernels of each colour that you will observe, then actually making the observations by counting corn kernels. 
Even if the hypothesis is okay, the fit won’t be perfect: observed numbers will almost always differ from predicted numbers at 
least a little, due to the effects of chance. For example: you counted seven rows of kernels to get your results. What if you’d 
counted a different seven rows? Your observed results would likely be a little bit different. The chi-square test is a way to de-
termine whether these differences between what you observed and what you expected are significant – that is, due to a problem 
with your hypothesis – or not significant  -- that is, just due to chance. If this difference between what was observed and what 
was expected is likely due to an incorrect hypothesis, then we will want to know that so we can reject our hypothesis. If the 
difference is likely due to chance alone, then we will not reject our hypothesis.

 Below you’ll see the equation used in the chi-square test. The tables provided in your lab manual work you through this 
equation in a series of steps to get a chi-square value at the end. The chi-square symbol is χ2 (χ is the Greek letter chi), and the 
Greek letter sigma (Σ)	indicates	that	you	take	the	sum.

χ2 =   Σ			(Observed - Expected )2

  Expected
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 To find the expected numbers for each class, take the proportion that you predicted that you would see, and multiply the total 
number observed by this proportion. For example, if you predicted a ratio of 2 pink kernels : 1 white kernel, then your predic-
tion tells you to expect 2/3 of the kernels to be pink and 1/3 of the kernels to be white. If you counted a total of 2003 kernels, 
you find how many kernels of each colour you expect to see by multiplying the total number that you observed by the fraction 
expected to be that colour: 

2/3 * 2003 = 1335 pink kernels expected (round to a whole number of kernels), and
1/3 * 2003 = 668 white kernels expected.

 Notice that the number of pink kernels (1335) plus the number of white kernels (668) is equal to the total number of kernels 
observed (2003).

 The chi-square test is a way of adding up all of the differences between what you observed and what you expected. The 
larger the difference between the observed and expected values, the greater the magnitude of the χ2 test statistic. A large χ2 value 
means that the differences between observed and expected were probably not due to chance; these differences are considered 
significant. But how large does the χ2 value have to be for us to decide that the differences are significant? To interpret the χ2 
value, there are four more steps: 1) determine the degrees of freedom, 2) look up your χ2 test statistic in the Table of Critical 
Chi-square Values, 3) find the p-value that corresponds to your χ2 test statistic, and 4) interpret your p-value. These steps are 
explained below. 

1) Determine	the	degrees	of	freedom.	This step is simple: the degrees of freedom is equal to the number of classes (phe-
notypes) minus 1. When using the chi-square test to compare expected and observed genotype frequencies in a popula-
tion (for example, when testing whether a population is in Hardy-Weinberg equilibrium), the degrees of freedom is equal
to the number of different genotypes minus the number of alleles.

2) Look	up	your	χ2	value	in	the	“Critical	χ2 values” table. This table will be provided on your lab benches, or you can
look up a copy online. Find the row that matches your calculated degrees of freedom, then ignore the other rows. Scan
across the numbers in that row horizontally to find the χ2 value that is closest to your calculated value. Your χ2 value will
likely not match exactly any of the values in that row, but will instead fall between two values. In this case, you will
focus on the two columns that your χ2 value falls between.

3) Find	the	p-value	that	corresponds	to	your	χ2 value. Scan vertically up the column(s) to find the probability or range of
probabilities that your data fits into. These are the decimal numbers in bold along the top row of the table, and they are
called “p-values”. If your χ2 value fell between two values on the χ2 table, then your p-value will also fall between two
values at the top of the table; you can represent this by stating that “[lower p-value] < p < [higher p-value]” (for example,
0.05 < p < 0.2).

4) Interpret	the	p-value.	The p-value is the probability that the difference between what you observed and what you ex-
pected is due to chance, so a low p-value (0.01 or less) means that there is a very small probability that the differences are
due to chance. If your p-value is 0.05 or smaller, then the differences between what you observed and what you expected
to observe are considered significant, and you should reject your hypothesis. If your p-value is greater than 0.05, then
the differences between what you observed and what you expected to observe are considered not significant, and you do
not reject your hypothesis.

 You may have noticed that in this test, our two choices are to reject or fail to reject the hypothesis: when using the chi-
square test, it is not appropriate to claim that you have “supported” or “proven” the hypothesis. The hypothesis can only be 
disproven, never proven – because the very next run of this experiment, and the next chi-square test you perform, might find 
that the hypothesis should be rejected. It’s not easy being a hypothesis!

III. Standard	Error	And	95%	Confidence	Intervals
 It is very common in biology to compare groups of measurements to determine whether the groups differ. For example, for a 
research article published in 2006, Dalhousie biologist Dr. Jeffrey Hutchings and his colleagues measured the length of the pel-
vic fins of a large number of Atlantic cod, and then compared the measurements made on male cod to the measurements made 
on female cod. The researchers were able to determine that the pelvic fins of male cod are larger than the pelvic fins of female 
cod, and in their article they discussed these findings in connection with the evolutionary significance of sexual dimorphism in 
cod (Skjaeraasen, Rowe, & Hutchings, 2006). 
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 There are a variety of different statistical methods to use when comparing two groups of measurements. You will see how 
the mean, standard deviation, and n can be used to construct a 95% confidence interval. In order to generate this interval, you 
will need to use the standard deviation and n to calculate another value, known as the standard error. This value is simple to 
calculate, but a bit tricky to understand. Here’s the general idea: if you are making measurements of, for example, fin length in 
male Atlantic cod, you will not be measuring the fins of the entire male Atlantic cod population of the world. You will just be 
measuring the fins of a sample of male cod (say, 400 individuals), and then using that data to draw conclusions about the overall 
male cod population. Your set of data will have a certain mean value that you can calculate, and we call this mean the sample 
mean.  Similarly, if it were possible for you to measure the fin length of every male Atlantic cod alive today, you could calculate 
the mean value for that group, and we would call this mean the population mean. 

 A measurable characteristic like pelvic fin length is likely to show small differences between all individuals, due to many 
different causes: genetic differences across multiple genes, environmental differences during development and adulthood, 
measurement error, and so on. For this reason, the lengths of cod pelvic fins are likely to be normally distributed: that is, if 
you were able to measure the entire male Atlantic cod population for the pelvic fin length trait, you would find that the measure-
ments would vary around the mean in a normal distribution: most of the measurements would be close to the mean, with fewer 
and fewer measurements at values farther away from the mean, distributed symmetrically across the mean and peaking at the 
mean. A statistical rule called the “68-95-99.7 Rule” describes this phenomenon: in a normally distributed population, 68% 
of the individual measurements fall within one standard deviation of the mean, 95% fall within two standard deviations of the 
mean, and 99.7% fall within three standard deviations of the  mean. (DeVeaux, Velleman, & Bock, 2008)

 Since your sample only consists of some of the male cod in the population, your sample mean will likely be a bit different 
from the population mean. If you then measured another sample of 400 male cod, you would likely get yet another slightly dif-
ferent sample mean; and if you caught yet another sample of 400 male cod and measured their fins, you would get yet another 
sample mean. The sample means will vary around the population mean (Fig. 1), just as your individual observations will vary 
around your sample mean. 

Figure	1. Sample means vary around the population mean. 
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 Just as we use standard deviation as an indication of how variable the measurements in your sample are around the sample 
mean, we use the standard error as an indication of how variable these sample means are around the population mean. 

 To calculate standard error, you divide your sample’s standard deviation by the square root of the number of observations in 
the sample, n:

    standard error =  standard deviation
	 	 	 	 	 	 	 													√n

 Now that you know what standard error is and how to calculate it, what can you do with it? One method to compare two 
means that is often used by biologists is to calculate a 95%	confidence	interval	for each mean, consisting of the mean plus and 
minus two times the standard error. This interval is often represented visually by graphing the mean, plus error bars extending 
above and below the mean that correspond to two times the standard error of this mean. 

 How does this work? Remember that according to the 68-95-99.7 Rule, when considering the values in a normally-distribut-
ed population, 95% of these values will fall within two standard errors of the mean. Similarly, if samples are being taken from 
a population, 95% of the sample means will fall within two standard errors of the population mean. A 95% confidence interval 
indicates that you are 95% confident that the population mean can be found somewhere within this interval. (DeVeaux, Velle-
man, & Bock 2008).

 If we construct 95% confidence intervals for two means, then by comparing the two intervals to see if they overlap, we can 
get a fairly good idea of whether the population means of the two groups are likely to be different.1  (See Figure 2 at the end of 
this Appendix for an example.)

 This is the same as saying that the difference between your two groups of measurements is likely to be significant: there is a 
difference between the two groups that is probably not due to chance alone. Confidence intervals are a quick way for us to test 
hypotheses: we begin with the hypothesis that there is no difference between the two groups, then calculate standard error and 
construct our confidence intervals. If the intervals overlap, then we do not reject our hypothesis that the groups do not differ. If 
the intervals do not overlap, then we reject our hypothesis that the groups do not differ.

 Let’s look at an example. Consider two large groups of aquatic newts, one group using blood worms as its primary food 
source and the other group using mantis shrimp as its primary food source. We want to know roughly whether the two groups 
of newts have different mean body weights.  If we collect a sample of 40 newts from each group, weigh each newt, and find that 
the sample of newts eating blood worms has a mean body weight of 20.6 g and a standard deviation of 4.7 g, and the sample of 
newts eating mantis shrimp has a mean body weight of 25.2 g and a standard deviation of 5.2 g, how can we determine quickly 
whether the two groups’ mean weights are likely different? First, we calculate the standard error for each sample. Then, we can 
make the comparison between the two groups graphically, by plotting each sample’s mean plus and minus two standard errors 
as error bars. For each interval, we are 95% confident that it contains the population mean (that is, the mean weight of each large 
group of newts). If the bars do not overlap, then it is likely that the two groups’ mean body weights are different.

 The data is summarized in Table 1 on the next page, and the confidence intervals are graphed in Figure 2. 

1  This is not quite the same as doing a statistical test to compare two means at p=0.05,  though: if the standard errors of the two samples are roughly equal, 
comparing 84% confidence intervals actually gives a closer approximation of this kind of test. (See Payton, Greenstone, & Schenker, 2003.) In this exercise, 
we will stick to comparing 95% confidence intervals.
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Table 1. Body weight of newts eating blood worms or mantis shrimp as the primary food source: mean 
weight, standard deviation, sample size (n), standard error, and 95% confidence intervals are given.

Food	Source Mean 
Weight
(g)

Standard 
Deviation 
(g)

n Standard 
Error 
(g)

95%	Confidence	
Interval

Blood worms 20.6 4.7 40 0.74 19.12 - 22.08

Mantis shrimp 25.2 5.2 40 0.82 23.56  - 26.84
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Figure	2. 95% confidence intervals for body weight of newts eating blood worms or mantis shrimp as 
the primary food type.

 We can see from the table and figure above that the 95% confidence intervals for the mean body weight of newts in the two 
groups do not overlap, so we will reject our hypothesis that the two groups do not differ.
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