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	 The use of scenario based exercises is beneficial when teaching complex or abstract material such as statistics, 
a subject that is challenging to learn and difficult to teach. Framing this instruction in the context of experimental 
design allows students to learn the essential concepts of statistics in a familiar setting. This also helps them to appre-
ciate the practical applications of what they are learning. In our introductory ecology and upper-level experimental 
design classes we have found seashells to be particularly useful for these lessons as students find them familiar and 
engaging. 
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Introduction

	 We have found that placing the instruction of statistics 
in an experimental design context helps students to more 
easily understand the material. Seashells have proven to be 
excellent subjects for these lessons. They are inexpensive, 
durable, familiar, interesting and easy to adapt to scenario-
based exercises. We have successfully used shells in both 
introductory and graduate level courses.
	 The learning objectives for the introductory course are 
data types, hypotheses, mean, standard deviation, and ba-
sic hypothesis testing. Scenarios are used to provide a con-
trolled exercise to introduce students to basic concepts in 
statistics and the mechanics of calculating t and c2 tests. This 
information is spread out over two laboratory exercises. In 
the first, students learn about continuous data, generate sum-
mary statistics (mean ± standard deviation), create null and 
alternative hypotheses, and test these with a t test. In the 
second, students learn about discrete data, create null and 
alternative hypotheses, and test these with a c2 test.
	 In the graduate course, the learning objectives include 
data types, hypotheses, sampling, principles of experimental 
design, and more advanced tests such as ANOVA. The ex-

ercise using dyed Bullia shells emphasizes that a research-
er’s decisions about the measurement and categorization 
of the shells is relevant to the analysis that they will per-
form. Students also get to explore the difficulties in sam-
pling and the difference between haphazard and random 
techniques. By the time the students complete the second 
exercise, using the assorted small shells, they have learned 
about hypotheses and are able to design and conduct an 
experiment. They often struggle with achieving random 
sampling and this provides an excellent opportunity for 
discussion. Students tend to start with complex designs 
and soon learn that a simpler approach is required.
	 Seashells have proven to be excellent subjects for the 
design of exercises for teaching statistics and experimen-
tal design. For introductory courses, they are inexpensive 
and durable materials that can be used in well-defined 
exercises. In a graduate course, the wide variety of shells 
available has made it relatively easy to replace traditional 
lectures with active exercises, allowing students to work 
through the material in a much more engaging manner.
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Student Outline
Note: Some tables have been omitted due to space constraints.

Exercise 1.
Describing continuous variation in populations and testing for statistically significant difference between means: 
The t test

Scenario

	 Snails of the genus Bullia live in marine habitats, and we have obtained samples from two different populations (Fig. 1). 
The “natural” population comes from a pristine bay with no obvious human impact. The “impacted” population comes from 
a nearby bay on which there are a number of factories. Snails in this bay are variously colored because they absorb pigments 
from the textile factories along the shore. The textile dyes themselves are not considered toxic, but because they are associated 
with many other substances produced by the mills, you are curious to see whether the size distribution in these two populations 
is different. In this exercise you will 1) measure and describe shell length in the samples of “natural” and “impacted” snails; 
and 2) test whether the differences in shell length between “natural” and “impacted” snail populations suggest an influence of 
environment, or should be attributed to chance. 

Figure 1.  A set of natural and dyed Bullia.

Measure the lengths (in mm, round to the nearest millimeter) of all the natural and impacted snails in your samples, and enter 
the values in Tables 1 and  2 respectively.

Table 1. Natural snail shell lengths (mm).

Specimen  Length (mm)
1
2
3
4
5
6
7
8
9
10
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Table 2. Impacted snail shell lengths (mm).

Specimen  Length (mm)
1
2
3
4
5
6
7
8
9
10

Mean Shell Length

Calculate mean shell lengths for the snail samples below:

Mean of the natural snail shell length		 Mean of the impacted snail shell

Standard Deviation

	 For calculating the standard deviation, Table 3 will be useful. We understand that this can be quickly done on a computer, 
but just this once you will be required to do it by hand, otherwise it will just seem like voodoo.

Table 3. Calculations of Standard Deviation for Shell Lengths.  

A. Natural Shell Sample

1
2
3
4
5
6
7
8
9
10

									 = ____________ 						  = ____________Σ(xi − x )
2 s = Σ(xi − x )

2

n −1

x = Σxi
n

x = Σxi
n

(xi − x )xi (xi − x )
2
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Table 3. Calculations of Standard Deviation for Shell Lengths. 

B. Impacted Shell Sample

1
2
3
4
5
6
7
8
9
10

									         = ____________						      = ____________

•	 For either the natural or impacted populations, do you think your estimate of the mean shell length of the population will 
be exactly right (i.e., the same as the true population mean)? Why or why not?

•	 If you were to take another sample (e.g., measure a different sample of snails from the same locations), do you think you 
would get exactly the same sample mean? Why or why not?

•	 Would measuring a much larger number of snails (e.g., 2,000) give you greater confidence in your estimate? 
•	 If the standard deviation was really large, would that increase or decrease your confidence in your estimate of the popula-

tion mean? Why?

	 Now that you have calculated mean length for samples of snails from different locations, it’s time to return to our original 
question: “Are they different?” Well, in a trivial sense they almost certainly will be. As we’ve already seen, even if you take two 
samples from the same population the sample means are likely to differ due to chance. This is increased with smaller samples 
or larger standard deviations. But what about the effects of being from a pristine or an impacted environment? At what point 
do we decide that chance is not an adequate explanation for the difference in means? This requires statistical testing. We begin 
with a null hypothesis (H0)—essentially a hypothesis that the factors we are investigating have no effect.
	 Write the null hypothesis for our investigation of the effect of source on shell length below:
			   H0:

	 This would mean that snails have the same length regardless of source. If, when we compare our two sample means, we 
determine that the probability of getting the differences we see just by chance (i.e., assuming they came from populations with 
the same mean) is very low, we reject our null hypothesis, and accept our alternative hypothesis (Ha).
			   Ha: The samples come from populations having different means.

	 How unlikely must it be for the samples to have come from populations with the same mean before we reject our null hy-
pothesis? In most cases, scientists will reject the null hypothesis if the probability of it being true is less than 5% (0.05)—this 
is referred to as the significance level (α). If the chance of getting sample means this different if drawn from populations with 
the same mean is less than α, the differences are considered to be statistically significant. 
	 Briefly distinguish “difference” and “statistically significant difference.”

	 If our sample means differ by a given amount, how do we determine the likelihood of this difference being due entirely to 
chance? What factors influence this likelihood? There are three factors that are important for us:

Σ(xi − x )
2 s = Σ(xi − x )

2

n −1

(xi − x )xi (xi − x )
2
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1. The difference between the means. The more different the two means are, the more likely we are to reject the null hypoth-
esis that they came from populations having the same mean (other things being equal).

2. The amount of variation. If the populations from which the samples were drawn have little variation, we wouldn’t expect 
the sample mean to differ very much. In reality, we don’t know the standard deviation of the population, but we can esti-
mate it based on the standard deviation in our samples.

3. Sample size. As we’ve already discussed, the larger the sample size, the less likely we are to have sample means that differ 
greatly from the true population mean (or from each other).

	 How do we calculate the probability of getting the differences we see? We will use a statistical test called a t-test. The for-
mula for calculating the t-statistic is:

	 Note: This formula assumes that the two populations have equal standard deviations and that we have fairly large samples. 
We won’t explore this complication here, but you will in statistics courses. The subscripts 1 and 2 refer to the two treatments we 
are considering (e.g., male vs. female, Anabaena presence vs. absence). The larger the t-statistic is, the more likely you are to 
reject the null hypothesis. A large t-statistic, not surprisingly, can come from having a large difference between the two sample 
means, or small standard deviations, or a combination of the two.

	 Calculate the t-statistic for your comparison of Natural vs. Impacted snail shell length:

			   tcalc=

	 To determine if the difference is statistically significant, you must compare your calculated t-value to a table of critical t-
values (tcrit). We’ve seen that the difference between means, and the amount of variation, was accounted for when you calcu-
lated your t-value, but what about sample size? You would expect that the larger the sample size the more likely you would be 
to reject the null hypothesis for a given t-value.
	 In Table I of critical values (omitted for space from this handout), you will see three columns The left column contains a 
value called degrees of freedom - this is how sample size influences the likelihood of rejecting your null hypothesis. The de-
grees of freedom can be calculated for your study as d.f. = n1 + n2 – 2
	 Calculate your d.f. for Natural vs. Impacted shell length    d.f. = 

	 To determine to which tabled t-value you need to compare your calculated t-value, you will need to know the degrees of 
freedom and the significance level (0.05 in most cases, 0.01 if you really want to reduce the probability of rejecting a true null 
hypothesis to 1%). For example, if you measured Selenastrum densities in 10 microcosms each from the two treatments, and 
your level of significance is 0.05, you would reject the null hypothesis if your calculated t was greater than tcrit. Notice that the 
greater your degree of freedom, the smaller your calculated t-value needs to be to reject your null hypothesis.
	 Based on your samples, is there a statistically significant difference between the lengths of snails from different sources?

Exercise 2. Difference versus statistically significant difference in discrete data: The Chi-square test

	 The statistical reasoning described above for continuous data also applies to discrete data (as in the example with coin flips), 
and the procedures for testing for statistical significance are similar (the detailed background is a little less intuitive, though, so 
we won’t explore it here). You form a null hypothesis, design an appropriate experiment, collect data, and statistically analyze 
your data to determine whether the differences from your expectation are attributable to chance (accept the null hypothesis) or 
are unlikely to be due to chance (reject the null hypothesis). There are many types of statistical tests for discrete data—we will 
use a very common one called the c2 (or Chi-square) test. 

	 With discrete distributions, mean values and standard deviations are not very meaningful because the values fall into only a 

t =
x1 − x2
s1
2

n1
+ s2

2

n2
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few discrete categories. For example:
• Natural selection. Drosophila either survive or they don’t. There are only two possible values for any individual fly: alive

or dead.
• Inheritance. Wing variation either is inherited according to Mendelian proportions or it is not. In this case, there are only

a limited number of possible genotypes and phenotypes that can result from a cross.
• Population genetics. Phenotypic and genotypic frequencies either conform to the expectations of the Hardy-Weinberg

equilibrium, or they do not. Again, only a few discrete genotypes and phenotypes are possible.
	 The basic design of a Chi-square test involves the comparison of discrete frequency distributions. Our null hypothesis is 
always that our observed values are the same as our predicted values. The basic calculation of chi-square is as follows:

where O = observed number of counts and E = expected number of counts. Note: You use the actual counts, not the proportions 
or percent of observed or expected frequencies!
	 In many cases you will have some reason to expect particular relative frequencies when a particular variable is sampled. The 
simplest example is a coin-toss experiment. We normally expect ½ heads and ½ tails. If we tossed the coin 20 times, we would 
expect 10 heads and 10 tails. Now suppose we did toss a coin 20 times and obtained 9 heads and 11 tails.

The calculated   c2 = (9–10)2/10 + (11–10)2/10 = 0.20.

	 The number of degrees of freedom for the goodness of fit test is: d.f. = C – 1, where C is the number of categories being 
studied. 

	 Since there are two categories (heads and tails) this means there is 2 – 1, or 1 degree of freedom. We use Table II of critical 
values (omitted for space from this handout) at the end of this exercise to look up the critical value at the selected probability 
level of 0.05 and at one degree of freedom. We find that the c2 crit value is 3.84. Since c2 calc <  c2 crit, we accept the null 
hypothesis. You can use this type of test for a single sample, with any number of categories, provided you already have the 
expected relative frequencies.

Figure 2. A set of ark shells.

	 Imagine the following scenario. Suppose you are an ecologist studying the biology of ark clams (Fig. 2). Your years of study 
have established that in healthy populations with normal birth and death rates, the ark clam population should consist of 60% 
one-year-olds, 30% two-year olds, and 10% three-year-olds. These clams do not live past age three, and we are disregarding age 
0 because they are too hard to count. These different ages form discrete size classes as indicated in the table below. In a nearby 
bay, where a salmon farm has been operating for several years, residents have been reporting fewer large ark clams and ask 
you to investigate. Are ark clams dying at younger ages? Is the distribution of ark clam ages different from a typical ark clam 
population? You have a sample of ark clams from this population with which to answer this question. Spread your ark clams 
out before you and measure them across the longest length to assign them to the appropriate age class. Enter the numbers in the 
appropriate column in the Table 4.

χ 2 = (O − E)2

E∑
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Table 4. Size of ark clams in a population.
Age (yrs) Size range (cm) Typical proportion Actual number in 

sample
Expected number in 

sample
1 < 3.8 60%
2 3.8-5.1 30%
3 >5.1 10%

	 Write the null hypothesis for our investigation of the effect of salmon farming on ark shell size distribution below:
			   H0: 

	 This is the same as saying that ark shells will have the same age distribution in areas with a salmon farm as in areas without. 
If, when we compare our sample (the shells in front of you) to what we expect (based on previous studies), we determine that 
the probability of getting the differences we see just by chance is very low, we reject our null hypothesis, and accept our alterna-
tive hypothesis (Ha).

Observed Numbers

How many did you find? 
	 Age 1 (= O1)? ______
	 Age 2 (= O2)? ______ 
	 Age 3 (= O3)? ______ 

Expected Numbers

We know from previous studies that the typical proportion of ages 1, 2, and 3 are 60%, 30%, and 10%, respectively. What are 
your expected numbers? (Remember—use actual numbers!)
	 Expected number of age 1 (= E1)? ___________
	 Expected number of age 2 (= E2)? ___________
	 Expected number of age 3 (= E3)? ___________

Calculate the Chi-square statistic for your comparison of age class distribution in clams:

	 c2 
calc = 

	 d.f. = 

	 As with the previous example, we will use a level of significance (α) of 0.05. Use Table II (omitted for space from this hand-
out) to determine the critical value of the Chi-square for your comparison of Age class distribution in clams
	 c2  

crit =

Based on your sample, is there a statistically significant difference in the proportion of clam age classes near the salmon farm 
versus a typical population?
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Figure 4. One of the sets of small shells.

Figure 3. Sets of Bullia for comparison.

Exercise 3.

Introduction to experimental design using dyed Bullia

	 On the first day of class, students are given two boxes of dyed Bullia  (Fig. 3) and are asked to devise ways to determine if 
these two populations are different. Students actively engage in the discovery of many of the problems that arise when design-
ing and conducting research. After they have had time to work through it on their own, the groups compare their results. This 
allows the instructors to introduce technical terms (e.g. continuous and discrete data) and lead a discussion of the problems with 
generating true random samples.  

Exercise 4.

Advanced experimental design and analysis using assorted small shells

	 After students are more familiar with sampling and basic tests, they are given two bags of assorted tiny shells (Fig. 4) and 
asked to devise an experiment to determine if they come from similar populations. There are dozens of different species rep-
resented and thousands of shells in each sample making counting everything impossible. Each group designs and conducts an 
experiment. This usually results in performing numerous preliminary studies to finalize their design. An interesting situation 
that arises is that groups often arrive at different answers. This provides a great opportunity for discussion about research find-
ing the “right” answer.
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Notes for the Instructor
Sources for shells

	 If you are fortunate to be near the water, shells can be 
collected in the wild. They can also be scrounged from the 
corners of biology department storerooms or purchased from 
commercial sources. Tourist shops and craft stores are also 
good places to look. For the best selection, a web search for 
“shell wholesaler” will provide numerous places to buy large 
quantities of specimens. We have purchased most of ours 
from U.S. Shell Inc. (www.ussshell.com).

Prep notes and sample data

Describing continuous variation in populations 

	 When setting up sets of shells, it is not realistic to make 
all of the sets have identical sizes distributions. The easiest 
way to construct the sets is to use Tukey’s Quick Test. This 
simple test is based on the number of non-overlapping values 
in the data. If there is significant difference based on this test, 
the t test will find one as well. It may be helpful to consider 
students and instructors who are color blind when construct-
ing the sets.

Natural shells (mm): 49, 47, 49, 32, 39, 34, 47, 36, 40, 49
	 mean  ± sd: 42.2 ± 6.75
Impacted shells (mm): 46, 54, 61, 50, 45, 64, 53, 43, 50, 47

mean ± sd: 51.3 ± 6.86
	 tcalc = 2.99, d.f. = 18, p < 0.05

Difference versus statistically significant difference in 
discrete data 

	 To avoid confusion arising from measurement error, we 
have found that it is helpful to use shells that fit neatly into 
each category, in this case at least 2 mm from a border. This 
means that there is often a large number of shells that are not 
usable in an order (Table 5). 

Table 5. Sample date for ark shell sizes.
Age 
(yrs)

Size range 
(cm)

Typical 
proportion

Actual 
# in 

sample

Expected 
# in 

sample
1 < 3.8 60% 9 17
2 3.8-5.1 30% 14 8
3 >5.1 10% 5 3
c2  

calc = 9.598, d.f. = 2, p <0.05

Introduction to experimental design using dyed Bullia

	 For this exercise we used a large number of dyed Bullia 
shells, though the actual species used is not important. For 
maximum effectiveness, the shells should vary in size and 
color, allowing students to devise experiments based on dis-
crete or continuous data. In addition, there should be large 
enough quantities so that counting all of the shells in unreal-

istic. The sets of shells are haphazardly constructed, with no 
“correct” answer in mind. We conduct this exercise on the 
first day of class and the protocols that the students devise 
are usually severely flawed. This is used as a springboard 
for discussion about subjects like data type and random sam-
pling. At this point, they do not do any statistical analysis.

Advanced experimental design and analysis using assorted 
small shells

	 This experiment uses an assortment of tiny (3-10 mm) 
shells available in 1 kg packages from U.S. Shell (Small 
Natural India Mix). A bag contains thousands of shells in at 
least 15 species. This provides a large variety and quantity of 
shells and 1 kg is used for each treatment.  

Example of a Student Generated Procedure and Data (Fig.5):
1. Empty the bag of shells into a rectangular container

(39 cm wide x 54.75 cm long x 8 cm deep).

2. Divide the area into a 3 x 3 grid.  Label the plots on the
grid 1 through 9, starting in the upper left corner and
proceeding left to right.

3. Generate random integer through random.org to select
test plot sample.

4. Fashion a 10.75 cm x 9.5 cm paper mask to cover the
randomly selected plot.

5. Separate shells based on shape and rib pattern.

6. Results were: c2  calc= 35.99   d.f. = 13   p < 0.001

Figure 5. Student generated data collection ta-
ble.

www.ussshell.com
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