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The following report is a modified description of an upper-level undergraduate lab course involving RNA 
interference (RNAi). RNAi is an umbrella term that includes any methodology that works to interfere 
with the expression of a target RNA sequence and is currently a major tool used by scientists around the 
world to understand gene function. A cost-effective PCR-based method for producing a popular form of 
RNAi, namely short hairpin RNA (shRNA), was adapted from the literature for the purposes of creating 
a mini project that undergraduate students with basic bench research skills would complete over a 12-
week semester course. For the purposes of this communication and recognizing the varied needs of the 
readership, the author outlines different scenarios in which shRNA against any gene transcript can be 
created and tested as either a short independent lab module or as a core project for an entire lab course. 	
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Introduction	
Since its discovery near the turn of the 21st 

century, RNA interference (RNAi) has become a 
popular method for scientists wishing to understand 
the biological function of a particular gene in the 
context of the cell or complete organism (for review, 
see Wilson & Doudna, 2013). RNAi was co-
discovered by two American scientists, Andrew Fire 
and Craig Mello1, who published in the late 90’s their 
description of a natural mechanism in cells that 
‘interfered’ with gene expression through the use of 
double-stranded (ds)RNA molecules as a mediator of 
interference. Thanks to their discovery, researchers 
now had a means to investigate and elucidate the 
function of any gene. By adding into a cell artificially-
designed interfering molecules of dsRNA with 
specific complementarity to naturally-occurring 
cellular mRNA transcripts, scientists could exploit the 
cell’s own RNAi machinery to ‘silence’ (or ‘knock 
down’) the targeted transcripts at will. In so doing, 
scientists could elaborate the role of each targeted

																																																													
1 They were co-winners for the Nobel Prize in Physiology or 
Medicine in 2006 for their findings. 

transcript on the phenotype of the cell and thus gain 
insight into their cellular functions. RNAi has been so 
impactful in both theory and practice that today most 
graduates with a postsecondary education in the 
biological sciences have at least heard of RNAi and its 
different forms, including short hairpin (sh)RNA, a 
popular form of dsRNA that can interfere with 
expression (Paddison et al., 2002). Unfortunately, at 
least at my institution, this knowledge did not extend 
beyond the lecture hall; short of working in a research 
lab that used RNAi strategies, the undergraduates’ 
exposure to RNAi was limited to passive transfer from 
expert-to-learner via lecture or course-assigned 
readings.   	

Since RNAi is a mainstay in basic biology 
research as well as a core concept in cell and molecular 
biology education, it only made sense to provide 
students another authentic research experience that 
was pedagogically-relevant to their learning but also 
easy and cost-effective to implement. In 2013, a 
shRNA-based project was piloted at the University of 
Ottawa as an undergraduate lab course in which 
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senior-level students would design, make, and test 
different shRNA-expressing constructs during a 12-
week semester. These constructs would be altered the 
following school years to target other genes in part to 
minimize any opportunities for cheating (e.g. students 
benefiting from the work of the previous cohort) but 
also to prevent obsolescence of the teaching material. 	

In addition to its scholastic benefits, the course 
was designed to be plug-and-play, meaning that 
although the overall project, namely the shRNA and 
its target gene, would vary after each repeat of the 
course, the main process including the design, 
creation, and testing protocols would remain 
unchanged with the possible exception of the final 
functional assay(s) used to measure the knock down 
effect2. This structure provided the instructor and the 
technical staff a measure of stability and predictability 
that simplified the organization and management of 
each lab session. Moreover, thanks to the consistency 
in overall course design and structure, the lab has 
become reasonably cost effective as any initial 
investment in equipment has been spread over the 
various iterations through the years. This is especially 
important when considering recent budgetary 
restrictions and cost increases for supplying reagents 
to three separate lab classes of up to 32 students per 
class per school year.	

The main objective of this report is to share with 
the reader a tried-and-true strategy at designing, 
making, and testing shRNA as part of an 
undergraduate lab experience. Of the three elements 
listed, this report will mainly focus on the design 
portion, describing the steps involved in the planning 
of a customizable shRNA-expressing DNA construct. 
This portion is arguably the easiest to adapt and adopt 
in a teaching laboratory environment, being the most 
affordable and the least technically-demanding. In so 
doing, any student, regardless of year of study, can 
learn how to design their own shRNA and, at the same 
time, gain hands-on experience with the procedure. 
This bioinformatics portion of the lab can be 
completed in as little as 3 to 6 hours and will only 
require internet-connectable devices to access free 
internet services (links provided). That being said, the 
lab can be extended to include a practical component, 
allowing students the opportunity to synthesize their 

designs using a traditional PCR-based method. In this 
expanded version of the course, two options are 
provided; option one is the least expensive and time 
consuming while option two (leaping off of option 
one) involves more steps and costs but offers some 
important advantages. The final aspect of the course, 
namely testing of the constructs, arguably the most 
costly and technically-demanding element, is left to 
the end of the report and is only possible if the 
necessary resources and equipment are available and 
to scale for the size of the class. In the end, regardless 
of which element or option is selected, the reader can 
gain some valuable pointers as to how to introduce an 
RNAi component in their lab curriculum. The report 
concludes by sharing some of the pertinent details (e.g. 
timeline, costs, and equipment) as well as insights to 
reduce costs without necessarily compromising the 
learning potential from working with shRNA. 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

																																																													
2 If the target was a fluorescent gene, a fluorescence-based assay 
would be used to measure the suppressive effect of the shRNA. If 
it was a kinase, a phosphorylation assay would be used to assess 
function. 
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Student Outline 
Designing, Making, and Testing shRNA, Parts I to VI 

	
OPTION 1:  Part I – Bioinformatics - Designing RNAi 101	
 
Goal: To learn how to design RNAi-expressing constructs in order to silence or “knock-down” gene 
expression 
 
 RNA interference (RNAi) is a natural mechanism of gene regulation first discovered back in the early 90s with 
petunias but later shown to play a role in animals including nematodes, insects, and mammals (as reviewed in Sen and 
Blau, 2006, and Scherer and Rossi, 2004). In short, the RNAi works in a sequence-specific manner to suppress mRNA 
translation and thereby silence gene expression (see below). Our understanding of the mechanisms by which this ‘gene 
silencing’ occurs has expanded to the point where labs around the world now use RNAi-based strategies to understand 
gene function in different plant and animal species. The ramification of this fundamental process in both the animal and 
plant kingdoms is not only limited to basic research; clinical scientists now have the ability to design therapeutic RNAi 
agents to treat various genetic disorders or create transgenic organisms. It should be no surprise, therefore, that in 2006, 
Drs. Andrew Fire and Craig Mello, credited for discovering RNAi, were jointly awarded the Nobel Prize in Physiology 
and Medicine. Today, it is hard not to find a seminal scientific publication in the medical field that does not use RNAi; a 
PubMed search using the keyword “RNAi” gave 18449 matches at the time of this manual preparation in 2015. In fact, the 
widespread use of RNAi in labs around the world was the prime motivation behind the design of this RNAi project.	
 As mentioned above, RNAi works in a sequence-specific manner to target and suppress mRNA translation. It 
appears to begin with the production of double-stranded RNA (dsRNA) that is encoded by non-protein coding genes; these 
dsRNA molecules are made up of a series of repeated sequences that are not only complementary to themselves but also 
to sequences found in certain protein-encoding mRNAs of the cell (reviewed in Sen and Blau, 2006). Once transcribed, 
the dsRNA that is formed is recognized by a complex of proteins which triggers a RNAse-based pathway that results in 
dsRNA cleavage into small interfering RNA (siRNA) duplexes. These 21-25 nucleotide long double-stranded siRNAs are 
then unwound and the negative (antisense) strand integrates into a multiprotein complex called the RNA-induced silencing 
complex (RISC) (as reviewed in Agrawal et al., 2003). This antisense (-) siRNA serves as the targeting agent for the RISC, 
hybridizing to a complementary sequence found in the sense (+) mRNA strand. Upon binding to the mRNA, RISC mediates 
endonucleolytic cleavage of the mRNA, thereby destroying it (hence silencing the expression of that gene). The RISC-
siRNA complex can then detach and re-associate with other complementary copies of mRNA to repeat the degradation. 
Depending on the extent of degradation, the level of suppression can be partial (gene knock-down) or complete (gene 
knock-out).	
 Please note that this is but ONE model to explain siRNA-based gene silencing. There are other models to explain 
gene silencing that you are encouraged to discover on your own, beginning with an online literature search (for example).	
 Since in this course we will be using a mammalian cell line, we will concern ourselves with a methodology that 
will allow us to suppress a gene in this context. The remaining part of this section will devote itself to the design of RNAi.	
 The science behind the design of RNAi for a particular gene is a topic of great interest for scientists interested in 
silencing a particular gene. It is important to note that not all sites along a mRNA transcript are sensitive to gene silencing 
by RNAi; only certain sequences appear to be targeted by siRNA (as reviewed in Castanotto et al., 2002). Not surprisingly, 
there has been a strong push for bioinformaticians to develop useful models to predict the locations of siRNA target sites.  
We will be using some of these tools to predict candidate sites. In the end, the only way to determine if a site is truly 
susceptible to RNAi is by experimentation.	

Here are some websites available for determining possible siRNA target sites (as of the time of this publication):3	
● Integrated DNA Technologies: http://www.idtdna.com/scitools/applications/rnai/rnai.aspx 
● GenScript: http://www.genscript.com/siRNA_target_finder.html 
● Invitrogen: http://rnaidesigner.thermofisher.com/rnaiexpress/ 
● ThermoScientific: http://www.thermoscientificbio.com/design-center/ 
● InvivoGen: http://www.sirnawizard.com/construct.php 

																																																													
3 We prefer using Invitrogen's RNAi designer as a tool to showcase shRNA design.  
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Materials:	

● Computers with internet access OR BYOD with WiFi-capacity	

Methods:	

1. You will search for a particular mRNA sequence for a gene using available online software tools (using NCBI). 
Using one of these sequences, you will practice designing a siRNA for one of the candidate sites that you find.	

● You will be looking for EGFP, enhanced green fluorescent protein = your target mRNA for 
knockdown4	

● Consult the e-Module 1 dealing with finding a nucleotide sequence for a particular gene (mRNA)5	
2. Follow the instructions of the TAs and coordinator. You will be asked to use one or more of the specified RNAi 

target site prediction tools above (e.g. Invitrogen’s online application) to find candidate target sites for siRNA. 	
3. Note that to find EGFP – you have to do a Nucleotide search and NOT a Gene search.	

● Consult the e-Module 2 dealing with siRNA target site determination4	
4. Save your results. Transfer some of the candidate sequences by copying-and-pasting into a Microsoft Word file.  

OPTION 1:  Part II – Bioinformatics - RNAi Primer Design	

Goal:		

• To design primers (specific nucleotide sequences of defined lengths) to create an RNAi construct 
(continued from Part I)	

 In this and the subsequent sections, most of the information concerning siRNA design is derived from an article 
written by D. Castanotto et al. (2002). We invite you to read this article; they provide various PCR-based strategies to 
generate siRNA. We will be using one of these strategies for this lab but it is important to understand the other approaches 
as well.	

In summary, you will be using a series of primers to generate a construct that will have all the components 
necessary to drive the autonomous expression of siRNA inside a mammalian cell. With the help of your primers and PCR, 
you will create a segment of DNA that will incorporate a human U6 RNA polymerase III promoter, sense and antisense 
RNA segments, a linker region (the hairpin loop) and a termination sequence for the RNA polymerase. There will also be 
some other modifications but that will be explained in the later sections.  
 N.B.: Primers are short oligonucleotide sequences that are complementary to specific regions in a nucleotide 
sequence. They are called “primers” because they “prime” or start the polymerase reaction which is critical in 
processes such DNA sequencing or the Polymerase Chain Reaction (PCR). We will be using the primers you design 
here in this section to create the shRNA-expressing construct by PCR later on.  

The challenge at this point is learning what to do. Fortunately, as summarized above and in the literature, scientists 
have noticed certain structural and compositional features of effective siRNA. From their observations, we now have a set 
of guidelines to help design primers that can be used to make siRNA-expressing constructs.  

You will select one of the candidate siRNA target sites from the previous section (Part I) and follow the 
instructions below to design primers that will allow you to generate a siRNA-producing construct. 

It should be emphasized that this method is a fast and inexpensive way to allow scientists to generate siRNA-
expressing constructs that can be screened to determine their effectiveness at gene silencing. This explains in part why we 
have chosen this method! 
N.B.:  The PCR product described in this section is an autonomous expression unit that can be transiently 
transfected directly into a eukaryotic cell line to knock-down gene expression.  

Materials:	

● Results from Bioinformatics Part I	
● Computer with internet connection	
● Web browser with latest drivers	

																																																													
4 A sample of the kind of sequence students should find is provided in APPENDIX B. 
5 It is recommended that video teaching aids (not provided here) be used to complement the text. 
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Rationale:	

The procedure for the PCR approach is depicted in Figure 1. Like all PCR reactions you will need primers and a 
template. Here the template is the human U6 RNA Polymerase III promoter (U6 Pr). The primers will vary depending on 
the method used.	

Again, you will be designing primers that will allow you to generate a DNA construct by PCR that has all the 
components necessary to generate siRNA (Figure 1D).  	

Since we are trying to generate siRNA, 
it not surprising that we need a promoter for a 
RNA polymerase in our PCR product. As it turns 
out, the RNA polymerase III promoters (ex. 
human U6 promoter) are very effective in 
mammals to generate siRNAs (Miyagishi and 
Taira, 2002). This is why all the panels in Figure 
1 show the U6 promoter (U6 Pr) upstream of the 
siRNA; this promoter is the entry site for RNA 
pol III to start transcription. 	

All RNA polymerases need a 
termination sequence to tell it to stop 
transcribing. The RNA polymerase III 
termination sequence is a stretch of 6 
deoxyadenosines (Ter). Ignore the “Tag” 
sequence (Figure 1) for the moment (it includes 
a restriction enzyme site).	

Figure 1A shows how to make the sense 
and antisense siRNA independently. By contrast 
Figures 1B and C allow us to make a construct 
with the sense and antisense expressed together, 
linked by a 9 nucleotide linker (loop) sequence. 
This type of construct will generate short hairpin 
RNA (shRNA) that will then be processed into 
siRNA in the cell.	

Notice that depending on the method 
used, the number and type of primers will vary. 
Both Figure 1B and 1C will generate a construct 

as shown in Figure 1D although 1B requires 2 rounds of PCR while 1D requires only 1 round to create Figure 1D. Again, 
Figure 1D is an autonomous shRNA-expression element; it can be purified and then transfected into a eukaryotic cell line 
to inhibit expression of the target. 

	

Methods:	

Go to NCBI the website (http://www.ncbi.nlm.nih.gov/ ) and find the human U6 RNA pol III promoter sequence.	
1. Since we need U6 specific primers in all 3 scenarios (Figure 1), we will need the sequence of human U6 RNA 

polymerase III.6   Using NCBI website, find the complete DNA sequence for this cis-regulatory element. 
Using the sequence, follow the steps below to design the upstream FORWARD U6 primer & REVERSE U6 
primer.	

N.B.: For the purposes of record-keeping and transparency, all primer designs are 
recorded in a text-processing file (e.g. Microsoft Word).	

2. We will be designing primers that allow us to isolate the COMPLETE U6 RNA pol III promoter.  So that means 
the FORWARD primer and REVERSE primer are on either end. 

																																																													
6 See APPENDIX B for the target sequence that students need to find. 
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3. Remember the orientation and sense of your primers. The FORWARD primer will be upstream pointing down 
the sequence 5’-to-3’; its sequence is based off the sense strand of the U6 sequence. The REVERSE primer will 
be at the other end, pointing back up the sequence 5’-to-3’; its sequence is complementary (antisense) to the U6 
sequence found through NCBI. 

4. There are certain guidelines that should be abided (if possible) when designing primers: 
● GC content should not exceed 50% of the primer when possible 
●  3’ end of the primer should end in at least two G’s and/or C’s. 
● The melting temperature of your primer (TBD) should be between 55-65oC; the Tm of the two primers 

should not differ by more than 3oC 
● Related to the Tm, the PCR primers are usually no shorter than 15 nucleotides 
● REMEMBER THESE ARE JUST GUIDELINES!7 

5. Melting Temperature (Tm) refers to the temperature at which 50% of a population of primers remain annealed to 
their template; increasing the temperature results in a greater % melting off the template sequence. This Tm is 
important when we do our PCR reactions with your primers. There are different formulas that can be used to 
measure Tm and some are more accurate than others. Here is the simplest but least accurate formula: 

    Tm = 4oC(# of G/C) + 2oC(# of A/T)      [1x SSC conditions]	

Eg. Primer X = 5’-AATCCGGAAACCGGATT-3’ has a Tm = 4(8 G/C’s) + 2(9 A/T’s) = 50oC 	

6. Use this formula for the moment to design your primers. It should be noted however that you will be using some 
software to calculate the Tm that employ a different formula (see Primer Design Module). The Tm may change 
and so may your primers. So long as your Tm falls within the 55-65oC range, you are in good shape. Primers 
whose Tm is too high are problematic and expensive to manufacture. Primers whose Tm is too low are cheap to 
make but inefficient in use and may work in ways that are not ideal (ex. Non-specificity). 

7. It is preferable that the primer contains at least 2 G or C residues (GG, GC, CG, CC) at its 3’ end because, unlike 
A/T, G/C form greater hydrogen bonding. Given that the polymerization of nucleotides begins at the 3’ hydroxyl 
on the end of the primer, the 3’ end is the most important end on the primer; it must be annealed to the template 
sequence for the polymerase to start DNA replication. That being said, too many G/C residues increase the 
chances of stable hairpin and primer dimers. Ideally, G/C composition of a primer sequence should not exceed 
50%. 

**AGAIN, THESE ARE GUIDELINES AND GIVEN YOUR SITUATION, DO NOT BE TOO CONCERNED IF 
YOU CANNOT SATISFY THEM ALL!  AT MINIMUM, MAKE THE Tm OF YOUR PRIMERS AS EQUAL AS 
POSSIBLE. **	

8. That being said, we can check these primers 
for any issues. Go to this website 
https://www.idtdna.com/calc/analyzer and 
you should see something like this (Figure 2).  
Notice the list of options on the right. Do 
“Analyze”, “Hairpin”, and “Self-Dimer”. Are 
there any problems?  If so, should we be 
worried about it? 
 
 
 
 
 
 
 
 
 
 

																																																													
7 Some guidelines may be broken due to constraints imposed by your gene sequence. The goal here is to be aware of possible explanations as to 
why your primers may not work later. 

Figure 2. IDT’s OligoAnalyzer opening page 
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9. Repeat with each other primer. 
10. We can also check for hetero-dimers, i.e. your FWD binding to your REV primers. Click on “Hetero-Dimer” and 

enter both primer sequences in their respective boxes. Do the comparison. 

**AGAIN, THERE MAY BE NOTHING YOU CAN DO TO FIX ANY POTENTIAL PROBLEMS WITH YOUR 
PRIMER DESIGNS (DEPENDING ON THE SITUATION). IF HOWEVER YOU CAN MAKE CHANGES TO 
THE SEQUENCE TO REMOVE ANY ISSUES (EX. HAIRPINNING OR DIMERIZATION), FIRST ASK US 
WHY OR WHY NOT.**	

11. Now that is over with, you now need to ensure specificity of your primer designs (go to the next section, 
Bioinformatics Part III). Make sure they can bind to U6 RNA pol III. Then come back here and continue on. 

12. Once the specificity has been confirmed, we can continue. Of the 3 methods shown in Figure 1 above, we will be 
doing Figure 1C. Now that you have designed the FORWARD and REVERSE U6 primers, we now need to 
modify our primers, specifically the primer that will incorporate both the sense and antisense sequences to create 
a shRNA. Based on Figure 1C, we see that the REVERSE U6 primer will carry the sense-loop-antisense-
termination sequences at the 5’ end of the REVERSE primer.	

13. Notice the order of these elements in the REVERSE primer of Figure 1C. The 5’ end will start with the 
Termination sequence followed by the antisense sequence, followed by the linker sequence, followed by the sense 
sequence, and finally by the U6 promoter sequence at the 3’ end. 

14. Also remember to add deoxyribonucleotides to your sequence (no uracils). I know this can be confusing since we 
are making siRNA but PCR does not amplify RNA!  YOUR PRIMERS ARE IN DNA! 

15. Also another final complication – remember that the REVERSE primer is the reverse complement (i.e. antisense) 
of the sense strand. So when you add nucleotides, you must add the reverse complement sequence in the proper 
direction, 5’-to-3’ (ex. If the sense strand is 5’TCCG3’ then the antisense becomes 5’CGGA3’)   

16. Remember that the linker sequence is a 9 nucleotide stretch, determined to be on average the best length for a 
hairpin loop (Castanotto et al., 2002). Moreover, avoid adding a stretch of 4 or more T’s in the sense strand in the 
loop.  

17. The Termination sequence is a stretch of 6 T’s (on the sense strand sequence). 
18. Make these modifications to your REVERSE primer and once you are done, show your design to the TAs or 

course coordinator to confirm proper design.  
N.B.: Here concludes Option 1 (the fastest and least costly method at producing a shRNA-expression construct). 
These primers can be ordered and used in a PCR reaction to create a shRNA-producing gene that can then be 
transfected into cells to knockdown expression (see Part VI). Please note however that a non-specific control 
shRNA will be needed as well (see Part V, Step 9).  
19. If you wish to insert the shRNA-construct into a plasmid (e.g. for GFP-tagging your transfected cells), you may 

now continue to optional Bioinformatics Parts IV and V (Option 2). 

 

OPTION 1:  Part III – Bioinformatics - Testing the Specificity of Your Primers 	

Goal:		

• To assure that the primer you designed can “find” your target sequence.	

You will now test to make sure that your primers from Section II are truly specific for the DNA element you are 
trying to copy and amplify. This is especially important for cloning purposes because we want your primers to target 
only the desired gene for cloning and nothing else. We can use the same application (Oligoanalyzer) from Section 
II that checked the quality of your primers. This same software will take the sequences of your primers and test them 
for possible matches to other sequences in a vast database (GenBank). The identity of possible matches will be displayed 
along with information about the degree and location of the match. In the end, you may find that your primer can recognize 
gene sequences in addition to U6. These other matches may pose a problem in your experiments but we can discuss this 
further in the lab.  
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Materials:	

● Computer with internet access	
● Web browser	
● Your primer sequences	

Methods: 	

1. Make sure you look at e-Module 3 first to see the steps for this section. 
2. Using OligoAnalyzer, you can now select the “NCBI Blast” 

option in the list on the right.  
3. This should take you to a new page that looks something like 

this (Figure 3). 
4. You will notice that your primer sequence has been pre-

loaded in the large box near the top. 
5. Since we are interested in human genes, we want to only 

check specificity against human sequences.8  Just below is 
an item called Database and it is defaulted to look at 
“Nucleotide collection (nr/nt).”  Change it to “Human 
Genomic plus transcript (Human G+T).”  Your primer 
will be tested against all known HUMAN gene transcripts.  

6. Select “BLAST” just below. 
7. In a few moments, you should see a new window in which 

you will see if your primer can find your gene as well as other 
genes you do not want (Figure 4). 

8. You now have a list of sequences (not necessarily genes) that 
contain identical or near-identical sequences to your primer. 
The degree of identity between your primer sequence and the 
possible target will depend on parameters that were set in the 
application (we use the default settings). These parameters 
may be changed, however, and will have an effect on the 
results. 

9. You will see that that there is more than one possible match 
for your primer sequence meaning that your primer could 
inadvertently recognize something other than what you want. 

10. You wish to confirm that your primer completely matches 
your desired target. Therefore, if you designed primers 
specific for the mouse CD8 gene, for example, the match 
should appear 100% for mouse CD8 for both primers (i.e. 
every nucleotide in your primer corresponds to an identical 
nucleotide in the target sequence). 

11. Do not be surprised however if your primer binds to other sequences. This is especially true if the gene is highly 
conserved and/or part of a family of genes (e.g. immunoglobulin domain in Ig superfamily).   If so, this could be a 
problem. 

12. Once you know that your primers are specific to your gene-of-interest, you can use these primers to isolate and amplify 
your target gene from DNA of cells known to contain the gene. The process we will be using to carry out this gene-
specific amplification is called Polymerase Chain Reaction (PCR). 

13. Return to Step 11 in Part II above and continue. 
  

																																																													
8 The criteria of the BLAST search will change depending on the needs of the course and the nature of the sequence being tested.  

Figure 3. NCBI’s BLAST opening window. 

Figure 4. NCBI’s BLAST sample search results. 
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OPTION 2:  Part IV – Bioinformatics - Restriction Mapping of Your Construct	

Goals:	

● For the option of cloning the PCR product into a plasmid (e.g. for GFP-tagging cells with shRNA).	
● To generate a restriction enzyme map of your construct.	
● To determine where, what, and how many times a library of known restriction enzymes do or do not cut your 

construct.	

Materials: 	

● A computer with internet access	
● A web browser with updated drivers	
● Your complete construct sequence including U6 with the shRNA tail 	

Methods:	

You will be creating a Restriction Map of your 
construct. In brief, restriction enzymes (r.e.) are endonucleases 
that recognize palindromic dsDNA sequences and cleave 
dsDNA within these sites. Different enzymes recognize 
different palindromes. However, some enzymes do share the 
same palindrome although they may cleave the dsDNA at 
different sites within the palindrome.	

Software is available free-of-charge on the web that 
can survey a sequence for the different palindromes that 
correspond to different restriction enzymes. These “restriction 
enzyme sites” are then mapped along with the identity of the 
enzyme that recognizes it. 	
1. Log on to your computer and access a web browser. 
2. Go to this web address:  

http://tools.neb.com/NEBcutter2/index.php. IF THIS 
ADDRESS DOES NOT WORK, GOTO www.neb.com 
AND LOOK FOR NEB CUTTER. 

3. You should come to a webpage that looks like Figure 4.	
4. Follow the instructions on the webpage. Cut and paste your 

DNA construct sequence (no numbers – text only) into the 
large white box. 

5. Click “SUBMIT”. 
6. You will be taken to a new webpage where your sequence 

is displayed along with the position of different restriction 
enzyme sites, where they cut, how many times, etc. (Figure 
5) 

7. Click on the “0 Cutters” (circled) to see the list of enzymes 
that DO NOT CUT your construct sequence.  

8. Save your output. If you can, make a print-out. 
9. With this information, you can go on to Bioinformatics Part 

V. 
  

Figure 4. New England Biolab’s NEBCutter opening 
window. 

	

Figure 5. New England Biolab’s NEBCutter 
restriction mapping results. 
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OPTION 2:  Part V – Bioinformatics - Adding R.E. Sites to Your Primers	

Goal:		
• To introduce restriction enzyme sites at the 5’ ends of your primers for the purposes of inserting a construct into 

a DNA plasmid (continuing from Part IV).	

Materials:	

● Your primer sequences	
● Your restriction map of the target construct (from Bioinformatics Part IV)		
● Restriction map of the different vectors (see below)	

Methods:	

1. You will incorporate restriction enzyme sites on to the 5’ ends of your primers. These sites will make it convenient to 
insert the construct into vectors for the purposes of i) large scale replication and ii) expression studies (to be done 
later).  

2. R.E. sites to be added to your oligonucleotides CANNOT be found in your construct but must be found in the 
expression vector, in this case, pEGFP-C3 (see map below). We have included a copy of the map for both plasmids 
including their multiple cloning sites or regions (MCS or MCR). 

3. Below are the maps for the two vectors you will be using in this course (Figure 6). Note how they highlight their MCR 
regions, usually by listing different r.e. sites. In our case we will focus on pEGFP-C3, not pDrive (to be explained 
later).  

	

4. The matches represent enzymes that you can use for the following steps.  
5. As indicated earlier, you are going to add r.e. sites to the 5’ end of your primers (see figure below). Again, these r.e. 

sites are present in the vector pEGFP-C3 but NOT in your construct (“0 cutters”).  Since you have designed only TWO 
primers, you will add only TWO r.e. sites; the r.e sites may be the same or different, depending on the situation. The 
challenge is to figure out which enzyme(s) you wish to use.  

6. You need to be mindful of which enzyme(s) you decide to use. As shown above, you will add the corresponding 
palindrome sequence for each r.e. at the 5’ end of each primer. If you are adding two different r.e.’s sites, read the 
following. If you are adding only one r.e. site to both ends, skip to step 8.  

Figure 6. Maps for pDrive (left) and pEGFP-C3 (right). The pDrive plasmid (Qiagen) is used for subcloning of the 
shRNA-expressing construct from Parts I to III before final insertion into pEGFP-C3. The EGFP in the latter allows 
for fluorescent tagging of transfected cells (see Part VI). 
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a. First, choose two enzymes that can use the same r.e. buffer; choose a buffer that gives 100% digestion for 
both enzymes (see APPENDIX A6, R.E. Buffer Chart).  Using the same buffer saves considerable time.  

b. Next, the forward primer will receive the r.e. site that is upstream of the other r.e. site in the DNA sequence 
of pEGFP-C3. eg. If you choose Bgl II and Pst I, Bgl II is upstream of Pst I in the MCR of pEGFP-C3 (see 
MCR above). Therefore, the forward primer will get Bgl II ‘s r.e. site added to its 5’ end. The reverse primer 
will receive the Pst I palindrome.  

c. Last, choose two enzymes that are separated by a minimum of 6 nucleotides in the sequence of pEGFP-C3. 
7. Make sure that your palindrome identity is maintained, 5’-to-3’, after addition to the 5’ end of your primers. 

Ex. If the palindrome is 5’GGATCC3’, then you add it in that EXACT sequence to the 5’ end of the 
primer.	

8. These primers are now ready to be used in a Polymerase Chain Reaction (PCR) to amplify DNA that contains all the 
elements needed to express your shRNA. With the restriction enzyme sites at both ends of your amplified shRNA-
expressing DNA construct, you can insert it into a plasmid by restriction digest and ligation. This way, you will be 
generating a plasmid-based shRNA expression construct that also co-expresses EGFP (see APPENDIX B for 
examples). 

9. A non-specific shRNA-expressing construct will also be needed. This construct follows all the steps described above 
but differs from the specific version at its sense and antisense regions (Figure 1).  The normal protocol is to make a 
copy of the gene-specific REV primer from Figure 1C and then randomize its sense and antisense sequences only. Be 
sure that the randomized sequences are complementary, however. Otherwise, all the other components of the 
constructs are maintained. This randomized version should not target the specific transcript and serve to control for 
non-specific effects with shRNA expression.   

Part VI – Measuring the Knockdown Effect with shRNA	

With the primers now designed (either Option 1 or 2), these can be ordered online (e.g. through Invitrogen) and 
delivered to the lab usually within a week.  With these primers in hand and using a DNA template bearing the U6 promoter, 
two separate PCR reactions (one for the non-specific control, another, specific) can be performed by the class. The PCR 
products can be separated on an ethidium bromide(EtBr)-agarose gel and visualized with a UV box to confirm successful 
production and for purification purposes (e.g. using DNA-gel purification kits from Qiagen). The clean DNA can then be 
used in a transfection assay using any number of Biosafety Level 1 (BSL1) compliant eukaryotic cells (e.g. P19, C2C12, 
or CHO) and a commercial transfection reagent, such as Lipofectaminetm (ThermoFisher) or GeneJuicetm (EMDMillipore).  
Alternatively, the constructs can be inserted into a reporter vector such as pEGFP-C3 before transfection. In so doing, 
students can track cells transfected by their shRNA-expressing constructs through the use of the fluorescent reporter gene.9   

After transfection, RNA can be extracted and reverse transcribed with the help of an oligodT primer to generate 
a mixed cDNA population. Since it is assumed that a PCR machine is available to create the expression constructs in the 
first place, this same machine can be adapted for use in a non-competitive reverse transcription (RT-) PCR assay (Gause 
& Adamovicz, 1994) in order to measure the level of knock down of the targeted transcript by the shRNA. For this RT-
PCR, two cDNA transcripts need to examined, namely the target (e.g. EGPF in this report) and a housekeeping gene (e.g. 
GAPDH). In short, students perform separate PCR reactions, one for each cDNA, amplified over various cycles, load the 
reactions on an EtBr-agarose gel and migrate, view the PCR products on a UV box, acquire a digital image, and perform 
densitometry analyses of the band intensities (e.g. with free software such as ImageJ10). A semi-quantitative analysis is 
therefore possible to compare and contrast the shRNA’s suppressive effects of the specific shRNA versus the non-specific 
variant at various time points. For details as to how to do this, refer to Gause & Adamovicz (1994). Keep in mind that this 
is but one way to measure the knockdown effect. Other approaches may be exploited depending on the nature and function 
of the gene being targeted as well as the equipment on hand. Depending on the situation (i.e. target gene and resources 
available), the specific approaches will be added to the lab manual for the students to follow when and where appropriate. 

  

																																																													
9 This ability to track fluorescence is not necessary function for the shRNA to knockdown its target and is only important if your target is EGFP 
(which it is in this report) and/or your teaching lab is equipped to measure fluorescence.  
10 https://imagej.nih.gov/ij/ 
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Materials	

● Parts I to V – Bioinformatics Portion involving 
design of shRNA-expressing construct	

o Digital devices with internet connection	
● Part VI – Making and Testing shRNA	

o Ability to synthesize in-house or order 
oligonucleotides from Parts I to V for 
synthesis (e.g. from Life Technologies 
Inc.)	

o PCR machine and reagents for PCR 
reaction including:	

▪ dNTPs, oligonucleotides from 
Parts I to V (primers), a U6 
RNA polymerase II template 
(human), DNA polymerase, 
DNA polymerase buffer (Taq)	

▪ reverse transcriptase (MMLV), 
RT buffer, and oligo dT	

o Agarose gel apparatus with power pack 
and suitable migration buffer	

▪ Agarose gel with ethidium 
bromide	

▪ UV box for gel imaging	
▪ Digital documentation device 

for image taking of gels	
▪ Image analysis software for 

densitometry of bands (e.g. free 
ImageJ)	

o DNA isolation kit from agarose gel 
(Qiagen)	

o Biosafety Level 1 (BSL1) mammalian 
cell line (e.g. CHO or P19)	

▪ Tissue culture facilities (e.g. 
incubator with CO2) and 
reagents to maintain cell lines	

o Transfection Reagent (Lipofectaminetm, 
GeneJuicetm or the like)	

o Total RNA isolation kit from cell lines 
(Qiagen)	

o Optional: Competent recA- bacteria 
(e.g. DH5α, HB101, etc.), LB-Agar 
plates with antibiotics, incubator 	

o Optional: DNA isolation from bacteria 
cultures (miniprep; Qiagen)	

o Optional: UA cloning (pDrive; Qiagen) 
and reporter plasmid (pEGFP-C3; 
Clontech)	

o Optional: Restriction enzymes and 
buffer (e.g. MluI; NEB)	

o Optional: Fluorescence Microscope/ 
Plate Reader/ Flow Cytometer	

 
Notes for the Instructor 

	
These notes provide some important insight and 

context that the reader may find useful either before or after 
reading the student protocols above. In short, Parts I to V 
are copied from the lab exercises for Days 1 and 2 
(Bioinformatics, APPENDIX A) of the actual lab course. 
They describe how students can design short DNA 
oligonucleotide sequences that after PCR will contain all 
the elements necessary to produce shRNA in a transfected 
mammalian cell line. This PCR-based strategy is derived 
from the foundational work of Castanotto, Li, and Rossi 
(2002 – a must read), who describe how to design and make 
a shRNA gene under the control of the human U6 RNA 
polymerase II promoter. This cis-acting element serves as 
the template for the PCR reaction with oligonucleotides 
designed from Parts I to V above. Integrated into the 
shRNA design process is the optional 5’ addition of 
restriction enzyme sites (APPENDIX B) allowing the 
insertion of the PCR product into an EGFP expression 
vector, namely pEGFP-C3 (Days 3 to 14, APPENDIX 1). 
The pEGFP-C3 provides the user the opportunity to 
fluorescently tag those cells transfected with the shRNA 
construct. For the purposes of this report, the pEGFP-C3 
vector is critical since EGFP mRNA is also the shRNA 
target and mammalian cells normally do not express this 
xenogene. Consequently, it must be co-inserted ectopically 
with the shRNA construct in order to see any effects. After 
making two different recombinants of this modified vector, 
one with a non-specific shRNA sequence and another with 
the EGFP-specific version, students can measure and 
compare the changes in EGFP expression (either at the 
mRNA level or at the protein/function level) at various 
time points post-transfection (Part VI). In so doing, 
students can assess the specificity and effectiveness of the 
RNAi-mediated ‘knockdown’ as described in the literature. 	

Here are some additional points that any lab 
instructor wishing to add shRNA to their lab may need to 
consider in the planning process:	

● As outlined in protocols I to V of this report (see 
below), free online software suites are used 
extensively in the design of the DNA 
oligonucleotides including the (optional) addition 
of restriction enzyme sties for cloning the 
construct into an expression vector.  

○ Students will need internet-enabled 
devices to carry out these tasks, either 
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with their own or with institutional 
resources. 

○ Normally I to V can be accomplished 
over the course of three to five hours of 
supervised class time. 

■ OPTION:  If the instructor 
does not wish to insert the 
shRNA construct into a vector 
(e.g. pEGFP-C3), protocols IV 
and V can be skipped. 

○ Two sequences are needed, namely the 
complete human U6 RNA polymerase 
III promoter and the target gene 
sequence (in this example, EGFP) (see 
APPENDIX B).  

○ Students will need to design 
oligonucleotides that can be used by 
PCR to produce either a nonspecific 
control or the EGFP-specific shRNA 
construct. 

■ It is recommended that all the 
students start with specific 
construct. 

■ Non-specific controls are 
randomized sequences of the 
specific shRNA elements. 

● This approach requires access to a PCR machine 
and associated reagents.  

○ A vector containing the human U6 RNA 
polymerase III promoter is necessary to 
serve as the template for the initial PCR. 

○ OPTION: The students can follow the 
steps outlined in the protocols to design 
their own sets of oligonucleotides but it 
is logistically simpler, cheaper, and 
pedagogically sound to provide students 
with pre-designed pirmer sets once the 
bioinformatics exercise is completed. In 
this course, odd groups work with the 
non-specific shRNA construct while the 
even groups work with the gene-specific 
variant. 

○ If cloning of the shRNA construct in a 
vector is desired, be mindful where it is 
to be placed.  In this case, the shRNA can 
NEVER be placed in the traditional 
insertion locale that is the multiple 
cloning site (MCS) because it will 
inadvertently destroy the mRNA in a 
non-specific manner. For this reason, 

MluI was used for insertion of the 
shRNA PCR product into pEGFP-C3. 

○ From APPENDIX A, the reader will 
notice that a UA cloning vector is used 
(pDrive).  Students first subclone into 
pDrive before transferring the PCR 
construct into pEGFP-C3. Again this 
subcloning step is optional. 

○ The insertion into an expression vector is 
optional. That being said, transfecting a 
reporter vector is highly 
recommended to measure transfection 
efficiency in the cells. 

■ OPTION:  The PCR product 
(after agarose gel purification) 
is capable of knocking down 
expression (cheapest and 
fastest alternative) if directly 
transfected into cells (no vector 
insertion is required). 

■ OPTION: A vector like 
pEGFP-C3 can be co-
transfected with the purified 
PCR product as two separate 
entities. 

● Any gene transcript can be targeted by this 
methodology. That being said, it is ideal to have 
multiple gene candidates, especially from 
published studies that provide evidence of 
working siRNA or shRNA sequences (e.g. the 
EGPF shRNA in APPENDIX B). 

○ The software suites showcased in Part I 
are predictive tools but it may be 
preferable to go with published 
sequences that are known to work. 

○ More gene candidates means that you 
can change the course year-after-year to 
minimize the possibility of students 
profiting from previous cohorts.  Aim for 
at least six, one per iteration of the 
course.  

○ Endogenous gene targets in a cell require 
high transfection efficiency (>90%) to 
“see” a knockdown effect. If the 
transfection efficiency of your cells falls 
below this threshold, it is advisable to 
switch to a non-endogenous 
(xenogenous) target gene (see next 
item). 

○ Based on experience, it is preferable to 
co-transfect two exogenous gene 
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constructs, one for the shRNA, the other 
for a gene not normally expressed by the 
transfected mammalian cell. For 
example, GFP is normally expressed in 
Aequorea Victoria and will not be 
expressed in a mammalian cell line. 
Here, high transfection efficiency is not 
as critical to see a ‘silencing’ effect. 

● Knockdown takes time. Be prepared to wait 24 to 
72 hours post transfection to see a reduction in 
expression (see Link to Supplemental Files).11 

○ One must consider biosafety restrictions 
and provide the appropriate equipment 
when working with cells. Ideally, 
biological agents, such as the cell lines, 
should not exceed Biosafety Level 1 
workplace conditions.  

○ This may be the most cost prohibitive 
aspect of the course (see APPENDIX C), 
namely requiring cell culture and 
transfection reagents. 

○ Additionally, DNA used to transfect 
cells must be from a clean preparation 
(e.g. Qiagen miniprep kits for DNA 
isolated from bacteria preparations).  

○ If reverse transcription (RT)-PCR is 
planned, a suitable protocol for RNA 
extraction from transfected mammalian 
cells will be needed. 

● Assays that measure the knockdown effect (part 
VI) can include but are not limited to: 

o Noncompetitive RT-PCR, qRT-PCR, 
and Northerns (to measure mRNA 
knockdown directly), and 

o Fluorescence-based, chemiluminescent-
based, and absorbance-based assays (to 
measure specific gene function 
alterations). 

o Again, endogenous targets in the host 
cell line will require high transfection 
efficiencies to detect any significant 
changes in expression and/or function. 

o Xenogenic targets (e.g. EGFP in 
mammals) are more forgiving from an 
experimental standpoint and provide as 

																																																													
11 Update as of 2016:  We saw reduction by RT-PCR and fluorescence 
microscopy by 16 hours post-transfection in C2C12 cells with EGFP-
specific shRNA. 

valid a learning experience as 
endogenous targets. 
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Appendix A  
Sample Course Outline 

 
Here is a copy of the Table of Contents for BPS4127 (Fall 2013) in which students created an shRNA against the 

EGFP transcript. This list outlines the order and types of experiments done over a 12-week semester with two 3-hour lab 
sessions or days per week. As outlined in the introduction, the general order and steps remain the same year-after-year but the 
targeted transcript changes with each iteration. For example, in 2013, EGFP was the target (as described in this report) while, 
in 2014, Bmi-1 was selected. With 5-6 different targets, a rotation of projects can be created.	

Table of Contents 

COURSE BACKGROUND	
i. - Who we are:	
ii. - Course Objectives:	
iii. - Required Material:	
iv. - Assessing Marks:	

Day 1- Introduction to BPS4127 and Bioinformatics, Sections 1.1 to 1.3	
1.0 - Introductory Laboratory	
1.1 - Bioinformatics Part I – RNAi 101	
1.2 - Bioinformatics Part II – Primer Design 
1.3 - Bioinformatics Part III – Testing The Specificity of Your Primers	

Day 2- Bioinformatics continued, Sections 2.1 to 2.2	
2.1 - Bioinformatics Part IV – Restriction Mapping of Your Gene	
2.2 - Bioinformatics Part V – Adding R.E. Sites To Your Primers	

Day 3 – PCR Optimization, and Vector Prep I	
3.1 - Polymerase Chain Reaction: DNA to more DNA	
3.2 - PCR: Test  primers under different conditions	
3.3 - Restriction enzyme-mediated digestion of vector DNA	
3.4 - Vector Preparation Part I	

Day 4 – PCR product purification; subcloning into pDrive	
4.1 – Purification of PCR product	
4.2 - Purification of DNA from an agarose gel	
4.3 - Cloning into pDrive vector (SUBCLONING)	

Day 5 – Transformation and Vector Prep Part II	
5.1 - Transformation of Bacteria with DNA plasmid	
5.2 - Part II – Dephosphorylation/purification of Vector DNA	

Day 6 –  Journal Club 1	
6.1 – Journal Club 1	

Day 7 – Minipreps and R.E. Digests	
7.1 - Plasmid DNA Boil Prep protocol	
7.2 - Digestion of your DNA preps with R.E.	

Day 8 – Identification of prep with insert; scientific paper writing	
8.1 - Analytical gel your digested construct and large digest	

Day 9 – Purification of the construct from pDrive, quantification of vector and insert, ligation into pEGFP-C3	
9.1 - Purification of DNA from an agarose gel slice	
11.1 - Ligation of Digested DNA into Vector	

Day 10 – Midterm	
Day 11 – Transformation and Journal Club 2	

11.1 - Transformation of Bacteria with DNA plasmid	
11.2 – Journal Club 2	

Day 12 – PCR Screening of Colonies. Flow Cytometry lecture	
12.1 – PCR – Screening of Bacteria Colonies for Your Construct	
12.2 – Flow Cytometry Lecture	
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Day 13 – Gel of PCR ,Clean DNA Miniprep and Flow Cytometry Data Analysis	
13.1 - Colony Selection and Growth	
13.2 - MINIPREP – Low Scale Isolation of DNA from Transformed Bacteria	
13.3 – Flow Cytometry Experiment	
13.4 – Flow Cytometry Data Analysis	

Day 14 – 5 Minute Proposal	
Day 15 – Transfection of Cells and Microscopy Lecture	

15.1 - Transient Transfection of Cells	
Day 16 – Microscopy, RNA Isolation, RT	

16.1 - Fluorescence Microscopy	
16.2 - RNA Isolation	
16.3 - Reverse Transcription – RNA to cDNA	

Day 17 – PCR of cDNA & Presentation Preparation	
17.1 – PCR of cDNA	

Day 18 – Analysis of Bmi-1 levels	
18.1 – Analysis of Bmi-1 transcript levels	

Days 19, 20 – Oral Presentations	
Day 21– Course Review	
Day 22– Final Exam	
APPENDICES	

Appendix A1 - Making Agarose Gels	
Appendix A2.1 - Quantifying your RNA	
Appendix A2.2 – Quantifying your DNA	
Appendix A3 – Buffer Recipes	
Appendix A4 –DNA Ladder	
Appendix A5 – Quantification of DNA on a gel	
Appendix A6 – R.E. Buffer Chart	
Appendix A7 – Writing a Scientific Paper	
Appendix A8 – Preparing Primers  
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Appendix B  
Sample Sequences 

 
Here are the accession numbers for both the U6 human RNA promoter and the EGFP gene. The former is necessary to 

design the U6-specific portion of the primers used to create and amplify the shRNA-expressing DNA construct.  The EGFP 
sequence is needed to create shRNA elements (sense and antisense) that will be incorporated in the reverse primer (see Figure 
1, Part I). In so doing, the shRNA will target and knock down EGFP expression. Andreou et al. (2003) was used as the source 
of EGFP-specific shRNA sequences (GFP22-siRNA, Qiagen). Ideally, it is preferable to use published sequences from studies 
that show a reduction effect rather than sequences suggested by the online tools. 	

● Homo sapiens U6 snRNA gene, complete sequence GenBank: JN255693.1 
● Lentiviral vector pDG2i-eGFP-V5-Puro, complete eGFP sequence GenBank: LT009443.1 
Here are the oligonucleotide (primer) sequences used in this iteration of the project. The forward primer is used with either 

reverse primer to generate a shRNA-expressing construct. For the PCR experiment that will allow a student to make the 
construct, a template containing the complete human U6 RNA polymerase III sequence is needed. Included in these sequences 
are restriction enzyme sites used for insertion of the PCR products into an expression vector (OPTION 2). 	
U6 FORWARD Oligonucleotide 

● 5’-ACGCGTCACAAGGTGGGATCCAAGGTCGGGCAGGAAGAGGGCCT-3’ 
 

Mlu I – Dra III – BamH I – U6 promoter sequence 

 

EGFP-specific shRNA REVERSE Oligonucleotide 
● 5’ACGCGTCACAAGGTGAAAAAACGGCAAGCTGACCCTGAAGTTCATCGTCTTGAAATGAACTTCAGGG

TCAGCTTGCGGTGTTTCGTCCTTTCCAC-3’ 

Non-specific shRNA REVERSE Oligonucleotide12 
● 5’ACGCGTCACAAGGTGAAAAAACGGACTTCATAAGGCGCATGCCGTCTTGAAGCATGCGCCTTATGAA

GTCGGTGTTTCGTCCTTTCCAC-3’ 

 

Mlu I – Dra III – Terminator – CG – antisense sequence – loop – sense sequence – U6 promoter sequence 

	 	

																																																													
12 This non-specific primer is not a randomized variant of the EGFP specific variant. That being said, it was a negative control derived from a previous 
publication (Jiang et al., 2010) and did not affect EGFP expression. 
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Appendix C   
Expenses 

 
This is a partial list of the costs associated with the lab. It does not include all the consumables and assumes certain 

equipment already being available (e.g. pipettors, pipettes, tips, agarose gel apparati, power packs, PCR machine, etc.). As of 
2016, this lab is assigned a course budget of Cdn$5800 for consumables for 3 sections of up to 32 students per section. Items 
in bold are optional.	

Line #	 Item	 Company	 Cost per Unit (Cdn$)a	

1	 Primers for PCRb	 Life Technologies Inc.	 $11-$25 per primer	

2	 Mammalian Cell-line (BSL1) eg. CHOc	 Sigma-Aldrich	 $495.00d	

3	 Tissue Culture 6 well plates (50 plates)	 VWR International	 $68.77	

4	 Genejuice Transfection Reagent (1 ml)	 Fisher Scientific	 $420.00	

5	 Eukaryotic expression vector (pEGFP-
C3)e	

Clontech	 ~$700	

6	 DNA Gel Extraction Kit (for 50 samples)f	 Qiagen	 $104.95	

7	 Mlu I (5000 Units) (1 vial)g	 New England Biolabs	 $296.65	

8	 UA DNA cloning Kit (for 40 samples)h	 Qiagen	 $360.00	

9	 Bacteria for DNA Transformations 
(DH5ɑ )	

ThermoFisher Scientific	 $238.35	

10	 Small-scale DNA Isolation Kit (50 
samples)i	

Qiagen	 $70.70	

11	 RNeasy Plus Mini Kit (50 samples)j	 Qiagen	 $400.00	

	 	 Actual Total	
(with Optional items)	

~$1563.72	
(~$3229.42)	

a. The listed costs are in Cdn$ and are pre-tax for a single item. Costs are as of the summer of 2016. 
b. Given that this protocol relies on PCR, one assumes that the equipment and consumables necessary for PCR are 

available. For primer sequences, see APPENDIX B. 
c. One assumes that the equipment and consumables necessary for maintaining a mammalian cell line are available. 

Chinese Hamster Ovarian cells are provided as an example of a Biosafety Level (BSL) 1 approved cell line.  
d. Values in brackets denote non-mandatory costs. For example, these cells were received for free for education 

reasons thanks to kind donations from in-house research labs. 
e. Any eukaryotic expression vector (ideally with a reporter molecule such as EGFP) can be used. This particular 

vector was received as a gift but can be purchased if necessary. Although recommended, this addition is optional. 
f. Gel extraction is necessary for PCR product purification for either transfection or optional cloning into a vector. 
g. The PCR product was cloned into pEGFP-C3 at the Mlu I site (position 1638). This step is optional. 
h. For cloning purposes, the PCR product is subcloned into pDrive before transfer to pEGFP-C3. This step is optional. 
i. If the construct is cloned into an expression vector, this step must be included before transfection. 
j. This is necessary to extract RNA for the RT-PCR analysis to measure reduction of targeted mRNA. 


