A multi-faceted enzyme lab:

Looking at the effect of an organophosphate insecticide on acetylcholinesterase activity in the bean beetle

Hector Fermin, Gurcharan Singh, Rahat Gul, Min Gyu Noh, Violeta Contreras Ramirez, and Fardad Firooznia
City College of New York, New York, NY 10031

Why use this system?
- Bean beetles are common pests
- Bean beetles are easy to maintain in the laboratory
- Organophosphate insecticides are commonly used to control this pest organism
- Ties in several course topics: Introduction to enzymes, the role of inhibitors in enzyme activity, cell-signaling, and potential ecological consequences

What should students know?
- An introduction to the life cycle of the insects
- Basic structure of proteins
- Basics about enzymes
- The basics of competitive and non-competitive inhibition
- Basics of synaptic signaling
- Function of acetylcholinesterase

Materials
- Bean beetles, Callosobruchus maculatus
- Incubator with light and temperature control
- Insecticide malaoxon
- ATC (as the substrate)
- DTNB as the indicator
- Spectrophotometer, vortexer, centrifuge
- Water bath, autoclave, micropipettes
- Other standard laboratory equipment

Enzyme Assay
Based on the work done by Ellman et al. (1961), Ffrench-Constant and Bonning (1989), Spencer et al. (1998), and Gbeye et al. (2012).

In the presence of the enzyme AChE, the compound ATCI (acetylthiocholine iodide) is hydrolyzed to produce acetate and thiocholine.

ATCI + H₂O → AChE → Acetate + Thiocohline Iodide + 2H⁺

The thiol (R-SH) group of thiocholine can react with the indicator compound DTNB (5,5'-dithio-bis-2-nitrobenzoic acid) to form TNB (5-thio-2-nitrobenzoate), which ionizes to the TNB⁻ in water at mildly alkaline pH; this is yellow and can be detected spectrophotometrically.

DTNB⁻ + Thiocohline → Mixed disulfide + TNB⁻ (yellow)

Basic Procedure

1. Homogenate Beetles
2. Transfer supernatant to Centrifuge
3. Centrifuge
4. Transfer to 4°C Kiev
5. Homogenate from A to B
6. Add acetate substrate
7. Incubate at 30°C
8. Read absorbance at 405 nm
9. Add DTNB
10. Incubate at 40°C
11. Read absorbance at 405 nm
12. Calculate relative inhibition

Procedure for Comparing Different Concentrations of Malaoxon

<table>
<thead>
<tr>
<th>Concentration of Malaoxon (mM)</th>
<th>Mean Relative Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>49.6</td>
</tr>
<tr>
<td>0.10</td>
<td>30.2</td>
</tr>
<tr>
<td>0.20</td>
<td>16.7</td>
</tr>
<tr>
<td>0.30</td>
<td>17.3</td>
</tr>
<tr>
<td>0.40</td>
<td>28.5</td>
</tr>
<tr>
<td>0.50</td>
<td>41.2</td>
</tr>
<tr>
<td>0.60</td>
<td>12.5</td>
</tr>
<tr>
<td>0.70</td>
<td>3.4</td>
</tr>
<tr>
<td>Mean</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Sample Student Results

Table 1: Relative inhibition of activity of AChE (acetylcholinesterase) caused by the insecticide malaoxon.

Figure 2: The effect of different concentrations of the insecticide malaoxon on the AChE enzyme activity. Columns represent mean relative inhibition caused by the insecticide, and error bars represent standard deviations.

Sample size was 4.

Comments
- This lab exercise is easily doable with first semester college students
- It can be done in regular 3-hour laboratories
- The topic can be supplemented with readings such as:
 - Rachel Carson’s “Silent Spring”
 - London et al. (2005) linking organophosphate insecticides and suicide
 - Sadeghi Hashjin et al. (2013) linking malathion with anxiety in rodents

Current Research
- To develop longer-term student projects to determine whether food source affects sensitivity of the AChE to insecticide
- To determine whether the beetles can be frozen at -20°C or -80°C for future studies without significant changes in enzyme activity
- To determine whether incubation time can be optimized

Acknowledgements
- Biology Department and Division of Science, CCNY
- Mariano Solley (lab instructor) and Students who participated in this project
- Chris Beck and Larry Blumer for beetles, instructions, beetle images, and other help
- Funding by NSF DUE-0815135, and DUE-0814373 to Morehouse College and Emory University

Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

References

Questions or Comments: fffirooznia@ccny.cuny.edu