Presenting Practical Botany to Engage Students

Karen A. McMahon

The University of Tulsa, Biological Science, 800 S. Tucker Dr., Tulsa OK 74104 USA
(karen-mcmahon@utulsa.edu)

Keywords: economic botany

Link to Original Poster:
http://www.ableweb.org/volumes/vol-36/poster?art=67

Introduction
The following are examples of the lab exercises that highlight economically useful plants and botanical products to engage non-majors in the Plants and Society Laboratory, a course in the general curriculum for the science requirement. Exercises include: viewing free-hand sections of parsnips with differential staining to understand the functional organization of roots; demonstrating a drying test for plant oils to understand the importance of unsaturated fatty acids; examining fibers from plant-derived fabrics to illustrate the differences between primary cell walls and secondary cell walls; making soap from plant oils; and making paper from plant fibers. Students readily embraced these laboratory activities and came to recognize the importance and value of plants to society.

Materials

General
1000 and 400 ml beakers
Compound light microscopes
Distilled water
Dropper pipets
Glass slides
Razor blades
Scissors
Thermometers
Water bath

Per Lesson
Differential Staining of Parsnip Root x.s.
Parsnip roots Phloroglucinol-HCl

Cut two thin cross sections of a parsnip root. Place each on a separate glass slide. Flood one section with IKI; the other with phloroglucinol-HCl. Observe without cover-slips under the scanning (4x) objective or 10x (low power) objective.

Drying Test for Plant Oils
Petri dishes Paint brushes (small)
Variety of plant oils – soybean, olive, canola, avocado, walnut & others

Paint a thin veneer of each plant oil on separate (and labeled) petri dish lids. Lay the lids in on a lab bench away from the direct sunlight. Check daily and record when the oil veneer has dried.

Fibers from Fabrics
Fabric or rope samples: Cotton, linen, jute, manilla hemp, sisal
Phloroglucinol-HCl

Tease out thin strands of each fiber and place on separate glass slides. Add phloroglucinol-HCl to each slide; cover with a cover slip. Observe fibers under the compound light microscope.

Soap from Plant Oils
NaOH (lye)
Oils: Crisco (cottonseed oil) or palm, coconut, & olive
Rubber gloves
Soap molds
Thermometers
Wooden spoons

Measure out 240ml of distilled into a 400ml beaker. Carefully add 85 g of NaOH. Stir with a wooden spoon until the lye is dissolved. Place the beaker in a 35°C water bath to cool. Warm oils to 650C. Measure out 225 ml of crisco or palm oil; 210 ml of coconut oil, and 180 ml of olive oil into...
Making Paper

Blender
Mold (bottom mesh frame) & deckle (open frame)
Rolling pin
Shredded paper and/or fibrous plant material
Sponges
Wire screen

Place the deckle on top of the mold and place in a tub of lukewarm water so that the water level is just below the top of the deckle. Fill a blender one-half to two-thirds full of lukewarm water; add shredded plant material or paper to the blender. Let is soak for a few minutes. Blend into a smooth slurry, the pulp. Pour pulp into the mold and deckle; smooth the pulp to eliminate lumps. Lift the mold and deckle out of the tub allowing the water to drain off. Place on the lab bench and carefully lift off the deckle. Place a piece of screen on top of the pulp; flip the mold over. Use sponges to soak up as much water as possible. Lift the mold away. Place blotting paper on the new paper; flip the new paper over and remove the wire screen. Replace with another sheet of blotting paper. Use a rolling pin to squeeze out as much water as possible from the new paper sandwiched between the blotting paper sheets. Dry the new paper in a microwave for 1 to 2 minutes on high. It may take several drying cycles.

References

Acknowledgements

Thank you to all of the fantastic students who have taken the Plants and Society Laboratory (Biol. 1011) since its inception in 2002. I have re-lived the thrill of first discovery through your eyes.

About the Author

Karen A. McMahon discovered ABLE from a flyer in 1994 and attended her first ABLE Conference/Workshop in 1995. She has enjoyed creating lab exercises that engage students in plants, a hard sell to many non-majors.