INTRODUCTION:
Transformative Learning is an adult learning theory. It states that students who are willing to learn, then go through disorienting dilemmas, resolve these through reflection and discourse, leading to a lasting change in their belief, perspective, or understanding (Mezirow, 2010; Taylor & Cranton, 2012). On our campus, Transformative Learning (TL) is part of our mission, as a means to graduate students who are productive, creative, ethical, and engaged citizens and leaders of students’ growth. We define TL as developing beyond-disciplinary skills and expanding students’ perspectives of their relationships with self, others, community, and environment. We measure their transformation across our 6 Tenets (Fig. 1).

METHODS:
The University of Central Oklahoma has implemented a unique, campus-wide process to capture, assess, and track students’ Transformative Learning (TL) and of our Central 6Tenets (see icons above) and hgp://uco.edu/stlr
wide process to capture, assess, and track students’ Transformative Learning. The University of Central Oklahoma has implemented a unique, campus-wide laboratory courses, and promoted by ABLE, Biology education is an ideal measure their transformation across our Central 6 Tenets (Fig. 1). Developing beyond-disciplinary skills and expanding students’ perspectives as a means to graduate students who are productive, creative, ethical, and willing to learn, then go through disorienting dilemmas, resolve these through reflection and discourse, leading to a lasting change in their belief, perspective, or understanding. University of Central Oklahoma has implemented a unique, campus-wide process to capture, assess, and track students’ Transformative Learning.

TRANSFORMATION LEARNING IN YOUR LAB:
Using Backwards Design principles
1. Identify the beyond-biology skills you’d like students to have when they leave your class. Maybe your institution already has a set of these.
2. Decide what it would look like for a student to display evidence of the best mastery of those skills, intermediate mastery, or just beginning understanding.
3. Create or modify activities (perhaps using existing ABLE resources) to meet those goals–tagging which activities give students the best chance for growth in the specific skills you identified.
4. Explain to students:
(a) the goals of each activity;
(b) this new, non-grade-based assessment; and,
(c) some incentive (e.g., highlighting these skills to future employers may help you land the job; the student with the most, mastered skills at the end of the semester will receive a free lunch)

DISCUSSION:
Results of our first full-year implementation are forthcoming, but pilot data show increased student retention and GPA for students that participated in STLR versus those that didn’t. Even without the technology infrastructure to implement a STLR-like setup for a biology laboratory course, individual instructors can use the same concept to motivate student learning in biology and beyond-biology content (e.g., communication, collaboration, and problem solving). See the blue box above-center for suggestions, encourage your chair to track and record growth across a degree program, or talk to your dean about tracking transformations inter-departmentally.

REFERENCES: