
From Cookbook to Guidebook:

Turning Traditional Biology Labs into Active Inquiries

A. Daniel (Dan) Johnson

Teaching Professor in Biology @ WFU Co-Founder, The Adapa Project

Overview of Workshop

Tip: blue/yellow = discuss, green = presented

- Set the stage
- Old "Diffusion" lab
- "5 of 7" General Design Model
 - Live, hybrid or online
- New "Diffusion" lab
- Logistics, Q&A
- Feedback Help!

What Experience Levels Are Here Today?

How many use:

- >50% cookbook
- >50% "active" labs

How many use:

- >50% I-week units
- >50% 2+-week units

Setting the Stage

Mhat are your challenges for adding, teaching "active / inquiry labs"?

Take:

- I min to think
- 5 min. to discuss
- Summarize, compile in <3-word phrases

What Are Your Implementation Challenges? (AM)

- Students uncomfortable
- Fair grading
- Req prof. devel.
- Loss of control
- Time to convert
- Multiple cooks
- Time, anxiety mgmt
- Students avoid thinking
- Storage b/w weeks
- Students keeping track
- Coming outside hours
- Do you meet learning outcomes?
- Failure IS an OPTION

- Setting boundaries
- Providing materials
- Topic diversity limited
- Coverage breadth v depth
- Setup
- Staff support
- Lab instructor buy-in
- TA training
- The RIGHT answer
- Damage control
- Manuals available
- Course alignment

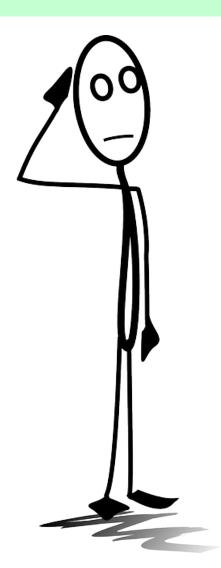
What Are Your Implementation Challenges? (PM)

- Exp. design ability
- Consistency b/w groups within a section
- How much bkgnd students have
- TA marking accuracy
- Rejection by faculty
- Time, supply resources
- Managing different outcomes in I lab section

- Training TAs
- Course alignment
- Low vs. high process skills
- Guiding vs directing
- Scared students C & free,A &away
- How to develop skills like writing
- Formative assessment
- Do WE know enough to do this effectively?

Common Challenges

- Lack of personal experience with model
- Coverage requirements vs. process skills
- Student & instructor resistance
- Lack of any LAB-oriented design guidelines
 - General:
 - Backwards design (Wiggins & McTighe)
 - Universal design for learning
 - For lecture:
 - PrBL, PjPBL, POGIL, TBL, etc.
 - Lab?


WFU's Top Three Challenges

- Training lab GTAs, faculty to:
 - Adopt a new mindset about learning
 - Be comfortable in an unfamiliar lab course structure
 - Manage labs differently from their own past experiences
- Building labs that OTHERS execute correctly!
 - GTAs want to make changes to fit their needs, not curriculum goals
- UG and GTA resistance (not today)

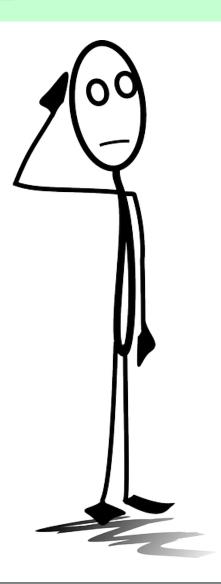
What is Inquiry "Mindset?"

Meta-Goals

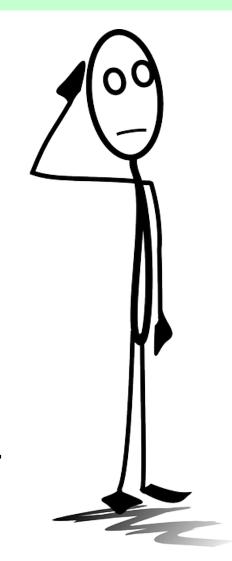
- Prime, coach students
- Most time, effort DOING:
 - Process of science
 - Autonomous exploration
 - Authentic activities

Mindset: Authentic Activities

Picture a mentored research lab:


– How do students learn important questions?

- What <u>skills</u> do they need?
- How do students get those skills?
- What do students <u>DO</u> to show progress?


How is Course Structure Different?

- Outcome goals
 - Process, skills centered
 - Ex.: ID 10 organisms vs. form clades
- Assessment
 - Open-ended, authentic, often
- Class structure, flow
 - Messy, loud, less predictable
- Management
 - Coaching, not content delivery
 - Instructors adapt in situ

How is Assessment Different?

- How will activities, assessments...
 - Create positive challenges?
 - -Identify gaps, weaknesses early?
 - Provide opportunities to correct gaps?
 - Accommodate a <u>range</u> of abilities?

Classic Exercise: "Diffusion Through a Membrane"

- I. Fill dialysis tubing "cell" with glucose, starch, or combined sol'n
- 2. Float in Lugol's starch indicator
- 3. After 20+ minutes record:
 - Water inside "cell" is black (starch "+")
 - Water outside "cell" is "+" w/glucose indicator
- 4. Report results (w'sheet, lab rept., n-book)

Is This Lab A Good Inquiry?

5 minutes:

Break down exercise

- Where are authentic activities?
- Where is autonomous exploration?
- What is "positive challenge"?
- What skills do students develop? How do they demonstrate them?
- Where is assessment?
- Is reporting memorable, useful? Why/not?
- What are logistics issues?

Concerns w/Original Diffusion Lab

- I. Dialysis tubing
 - Unfamiliar, less engaging
 - Cannot vary properties
- Assays show diffusion <u>indirectly</u>;
 do not directly observe (lodine sol'n – hazardous)
- 3. Students report known outcomes
- 4. Online mat'ls access

Concerns w/Original Version, cont.

- 4. Reinforces misconception exercise = experiment
- 5. Where do students:
 - Experience "positive challenge"?
 - Exercise critical thinking?
 - Make their own decisions?
 - Discover "personally novel" knowledge?

General Revision & Design Strategy

Modules have 5-7 linked stages:

- Initial assessment
- Structured inquiry/training
 - Reconvene, debrief
- Open exploration phase
 - Initial group reporting
- Guided inquiry phase
 - Final group or individual reporting

Each stage
EXPLICITLY
tied to prior
one(s)

Version A of Design Strategy

Five Stages (WFU uses, but is retiring):

- Initial assessment
- Structured inquiry/training
- Reconvene & debrief
- Open exploration phase
- Initial group reporting
- Guided inquiry phase
- Final <u>individual</u> or group reporting

Version B of Design Strategy

Five Stages (modeled today):

- Initial assessment
- Structured inquiry/training
- Reconvene & debrief
- Open exploration phase
- Initial group reporting
- Guided inquiry phase
- Final group or individual reporting

Version C of Design Strategy

Seven Stages (Project courses; WFU's target)

- Initial assessment (pre-lab quiz)
- Structured inquiry/training
 - Reconvene & debrief (informal, oral)
- Open exploration phase
 - Initial group reporting (informal, oral)
- Guided inquiry phase
 - Final group or individual reporting (formal written/oral)

Diffusion 2.0: Initial Assessment

Three Lead-In Questions

- What do you know about diffusion?
- How do you know it?
- Is _(ex.)_ an example of diffusion? What about _(counter-ex.)_? What is your evidence?

What Initial Assessment Accomplishes

Instructor's Three Lead-In Questions

- What do you know about diffusion?
 (Assessing prior knowledge)
- How do you know it?
 (Sets expectation for evidence)
- Is ____ an example of diffusion?
 What about ____?
 (Example vs. counter-example, rationale)

FYI: Questions are Based in Stephen Toulmin's Reasoning Model

- What do you know about diffusion?
 - Claim
- How do you know it?
 - Evidence/data/backing
 - Reasoning/warrant/assumptions
 - Accuracy, relevance, credibility
- Is _(ex.)_ an example of diffusion?
 - *Transfer
- What about _(counter-ex.)_?
 - Rebuttal/limitations
 - *Boundaries for transfer

 Not part of Toulmin model but good pedagogical practices

Diffusion 2.0: Open Exploration

Student Directions

Your Ist challenge—

- Create a <u>visual</u> demo of diffusion across membrane
- Use any materials here in lab
 - Hand materials list
- You have until ____ to finish, report
 - Hold back optional hints; students need "struggle time"

Diffusion 2.0: Available Materials

Diffusible Mat'ls

- Particulate: pigment based paints
- Soluble: food or pond dye, red soda/wine, coffee

Absorb, Carry Color

- Liquid: water, veg. oil
- Solid: marshmallows, balsa wood, styrofoam, banana or other food "cubes"

Membranes, Containers, Etc.

- Latex, nitrile gloves
- Cling wrap, plastic bags
- Newspaper (I-I0 layers)
- Paper towels, coffee filters

- Canning jars
- Plastic beakers
- Tape
- Parafilm

Optional Hints to Guide Students

- What will be diffusing?
- What will carry diffusing substance?
- What will absorb color for observations?
- What containers will you use?
- What will you need to quantify, and how will you do it?

Diffusion 2.0: Initial Group Report

- Begin w/general question template
 - What are you doing/did you do?
 - Why?
 - What do/did you expect/actually see?
 - What does it mean?
- Add I-2 specific qus. directed at central topic
 - "How does your example show diffusion?"
 - "Based on the demos & data, is rate of diffusion constant?"

Diffusion 2.0: Guided Inquiry Phase

- Options A & B:
 - Background: rate of diffusion depends on factors like -
 - Area available
 - Concentration gradient
 - Properties of diffusing material
 - Distance
 - Temperature

Diffusion 2.0: Guided Inquiry Phase

- Options A & B (cont.):
 - Second challenge is to determine:
 - Option A (basic): how one factor affects rate of diffusion.
 - Option B (intermediate): which factor most affects diffusion.
 - You have until _____ to report to class

Diffusion 2.0: Guided Inquiry Phase

- Option C (advanced):
 - Rate of diffusion determined by several factors.
 - Your challenge: create a general model for how different factors control rate of diffusion
 - Work with others in lab to solve challenge
 - You have until _____ to report what you discovered

What am I asking them to devise?

Diffusion 2.0: Final Group Reporting

- Repeat general question template:
 - What did you do?
 - Why did you do it?
 - What did you see?
 - What does it mean? (Ex.: "how does it show diffusion?")
- Modify the I-2 specific qus.:
 - Alternate explanations
 - Links to other lab units, topics

Logistics & Practical Tips: Questions

<u>Reusable</u> question templates = scaffold for thinking process

- Ex.: simple directed questions for experimental design
 - What are you doing?
 - Etc.

Logistics & Tips

- General questions map to writing:
 - What did you do? = Methods
 - Why did you do it? = Introduction
 - What did you see? = Results
 - What does it mean?
 - Alternate explanations
 - Links to other lab units,
 topics

= Discussion

Logistics & Tips: Inviting In Technology

- Use phones to document results
 - Photographs
 - Video or audio files
- Online shared reporting methods
 - LMS
 - Google apps
 - WordPress, Wiki
- Future-proof using OERs, FOSSware

Logistics & Tips

- Common design mistakes
 - Scripting for outcomes, <u>not</u> process
 - Eliminating <u>all</u> confusion, missteps
 - Moving too fast
 - Over-responding to complaints (what do DATA tell you?)

Logistics & Tips

Your questions, challenges, concerns

Your Final Challenge Today

Break down YOUR Exercise

- What are:
 - Authentic processes?
 - Autonomous exploration?
 - Positive challenge?
 - Skills students develop? How demonstrated?
- Where is assessment?
 - Is reporting memorable, useful?
- What are logistics issues?

Rebuild YOUR Exercise

- Initial assessment
- Structured inquiry/training
 - Reconvene, debrief
- Open exploration phase
 - Initial group reporting
- Guided inquiry phase
 - Final group or individual reporting

Questions, Suggestions, Etc.

Dan Johnson
336-758-5320
johnsoad@wfu.edu

Don't Forget!
Fill out evaluations