Inquiry-based cell culture course improves student conceptual and practical understanding of biomedical research

Gregory J. Eaton\(^1\), Alison Kruftka\(^1\), Mark Dittmar\(^2\), Cristina Iftode\(^2\)
\(^1\)Department of Biological Sciences, Rowan University, Glassboro, NJ,
\(^2\)Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ

Introduction

Course goals
- Develop strong scientific thinking abilities in the context of cell biology experimentation
- Train students in cell culture methods through inquiry-based activities
- Engage students in a research-like experience

Course modules
- Cell Proliferation
 - NIH 3T3 cells used to examine the contribution of sera and substrates to the rate of cell proliferation
- Cell Viability
 - NIH 3T3 cells used to test the cytotoxic potential of various additives
- Cell Differentiation
 - Adipose derived mesenchymal stem cells (AD-MSCs) used to examine their multipotent differentiation capacities: adipogenesis, osteogenesis, chondrogenesis

Lab intensive course implementation
- Flipped classroom model
 - Content delivery via textbook and course materials posted to Blackboard
 - In class activities are mainly development of culture skills and experimentation (groups of 2-4 students)
- Testing
 - On-line: pre-class quizzes, illustration of protocols and experimental designs
 - In class: three written examinations and one laboratory practicum

Course assessment
- Pre- and post-course self-efficacy and career aspirations surveys
- Experimental Design Ability Test (EDAT)

Examples of Student Experimental Data

<table>
<thead>
<tr>
<th>Cell Differentiation</th>
<th>Cell Viability-Live/Dead</th>
<th>Cell Viability-Alamar Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

- Self-efficacy and career aspirations surveys show a positive effect on the students’ confidence
- Students indicate a better understanding of biomedical and cell culture research and a slight increase in their interest in these areas
- Post-course evaluation of experimental design ability did not demonstrate significant improvement.

Future Directions

- Assessment of experimental design ability in the specific context of cell biology
- Development and assessment of new modules to teach
 - flow cytometry
 - gene expression analysis
 - primary explant culture

Acknowledgments

- We thank Jennifer Klavens, Frank Wagner, Frantzeska Giginis, Emily Schmidt, and Tom Christiani for laboratory assistance.
- This work was funded by the National Science Foundation TUES Award #1245595.