Developing Algebraic and Geometric Understanding of Stereology in Biological and Astronomy Contexts

A.S. O'NEIL ${ }^{1,3}$, R.M. KRALL², M. SANDEN ${ }^{3}$, and R.L. COOPER ${ }^{3}$

${ }^{1}$ Division of Physical Therapy, Cincinnati Children's Hospital, Cincinnati, Ohio, ${ }^{2}$ Deptartment of STEM, University of Kentucky, ${ }^{3}$ Department of Biology, University of Kentucky

Module 1: Middle School


```
\m=\
```


Wrap ui
 2. Have studentis try to determine the real structure and use geometry to calculate the true area for
comparisons.
3. Post test

Module 2: High School / College

 USe of computer sottware

Drawing conclusions and student assessment

NGSS Standards

K-2-ETS1-2 Engineering Design
K-2-ETS1 Engineering Design
MS-LS1 From Molecules to Organisms: Structures and Processes MS-LS1-2 From Molecules to Organisms: Structures and Processe HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS1-2 From Molecules to Organisms: Structures and Processes

Skeletal muscle

Conclusions

. We developed a module addressing stereological issues
which relates to real world problems. This maybe be engaging to students and teachers.
2. Modules examining 2 D image projections for reconstruction ent to develop various
see $1^{\text {st }}$ hand the prob real world. With literature searching in scientific journals and resources, students will be exposed to new concepts and ideas.
3. Determining the best way to process 2 D images for 3 D algebra, geometry, and calculus to biological problems.
4. Computer simulations allow teachers and students to quickly The models are faster and cheaper to implement, but students may struggle to understand what is happening behind the scenes to cause those results.
5. In the future, this procedure can be adapted to address additional factors that influence imaging topics such as Nettogo models to describe biological processess can also be applied to other areas of interest.

References

