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Introduction 

A major goal of biology is to integrate structural and functional studies in order to better 
understand living things.  A correlation between structural and functional data has, in the past, been 
difficult because while functional studies (e.g., physiology and biochemistry) have tended to 
produce quantitative data, structural studies (e.g., morphology and anatomy) have tended to be 
qualitative.  In the last few decades morphometric techniques have been developed which allow 
structural data to be quantified and thus facilitate comparison with functional studies.  Stereology, 
the study of three-dimensional objects through the interpretation of two-dimensional images, is one 
such technique.  Not only does stereology provide a means of correlating structure and function, but 
it does so in a way that (1) removes the bias of the investigator, (2) allows the detection of small 
changes which may otherwise go unnoticed, and (3) provides a reliable means of comparing data, 
which can then be analyzed statistically. 

The purpose of this chapter is to describe several student exercises which may be used to 
introduce students to the techniques of stereological analysis.  In addition, each exercise adds a new 
dimension to the particular topic under investigation, thus augmenting the traditional approaches 
used to teach the topic. 

The exercises presented are intended for introductory-level college students.  They would be 
equally applicable, however, both for upper-division collegians and advanced secondary students.  
As Weibel (1973:291) notes: “Many biologists shy away from using stereological methods because 
of the apparent need for advanced mathematical knowledge...  In fact, the only mathematics needed 
for applying stereology is an elementary knowledge of statistics.”  In reality, the only mathematical 
knowledge necessary to generate data is the ability to count; it is only the level of sophistication of 
data analysis that is enhanced by a knowledge of statistics and this can be adjusted to the level of the 
students. 

Furthermore, once students have been introduced to various stereological techniques through 
laboratory exercises, such as are described here, they may utilize appropriate techniques to enhance 
independent research projects at virtually any level (precollegiate through graduate). 

Each exercise is designed to be one component of a laboratory examining a particular topic, in 
this way supplementing traditional laboratory material.  Thirty to 40 minutes should be sufficient 
time to introduce the technique, explain the procedure, and generate and analyze data.  
Subsequently, as similar procedures are used in other exercises, less time would be required. 

The time required in preparation will vary with the resources available to the instructor.  Ideally 
each student would be supplied with several (different) photomicrographs of the study material and 
a sample probe.  In such a case time and materials would have to be expended to prepare the 
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photomicrographs and test probes.  These are reusable, however, so when the exercise is repeated in 
the future everything would be ready immediately.  An alternative, which I originally used, was to 
allow students to use their individual prepared microscope slides on a demonstration microscope 
with a video camera and a television monitor.  A single grid probe was taped to the television screen 
so that individual students, or groups of students, could analyze their own slides.  A third alternative, 
which would also allow students to analyze their own slides, would be to equip student microscopes 
with Weibel discs or other similar eyepiece reticules.  Depending on the material to be examined 
this may either be the quickest and most efficient method (for relatively small counts) or next to 
impossible (for larger counts where already scored sample points cannot be “crossed off”).  A final 
alternative would be to utilize published photomicrographs such as in a textbook.  In this case all 
that would be required is a sample probe.  It would not be possible to generate statistically 
significant data using this alternative because all counts would be made off a single sample, 
nevertheless this approach would be suitable for teaching the technique and would involve little cost 
and virtually no set-up time. 

Student Outline 

Stereology is the study off three-dimensional objects through the interpretation of two-
dimensional images.  This is useful not only because it allows us to study the structure of entire cells 
and tissues based on thin sections or photomicrographs of sections, but also because it allows us to 
study this structural quantitatively.  For example, the physiology of the tissue (e.g., rate of 
photosynthesis) could be directly compared with the anatomy of the same tissue (e.g., volume of 
photosynthetic cells).  If you take a moment to think about it you will recognize that there will be 
some basic problems in trying to interpret the three-dimensional structure of tissues given only thin 
sections.  One of the most serious is that the plane of section will often determine the profile of the 
sectioned object.  For instance, a sphere, ellipsoid, cone, or cylinder may all yield a circular profile 
when cut in thin section (Figure 3.1).  Experience derived from studying many sections of tissue is 
necessary to overcome this problem.  You will not be asked to interpret the shape of unknown 
structures in any of the following exercises, but you must keep this problem in mind if you plan to 
utilize stereological techniques in independent research projects. 

A second problem is easily dealt with by stereological techniques themselves.  The size of an 
object is an important parameter of any quantitative tissue study, yet the size of a profile will again 
depend upon the plane of section (Figure 3.1A,C,D).  It is our good fortune that in cutting an object, 
such as the sphere in Figure 3.1A, the probability of obtaining each possible circular profile is not 
the same.  In fact, the closer the profile diameter is to the true diameter of the sphere, the greater is 
its probability of being encountered in a section.  It can be shown, using a rigorous statistical 
approach, that the probability of obtaining a profile greater than or equal to 1/2 of the actual 
diameter is about 87% (Weibel, 1973, 1980).  A careful examination of Figure 3.2 should convince 
you of this.  The probabilistic relationship between the size of a randomly obtained profile and the 
true diameter of the object from which the profile was obtained allows the latter to be inferred from 
the former.  One must simply sample, in random fashion, a large number of profiles of the sample. 

Stereological techniques are not limited to the biological sciences.  Actually, they were first 
devised as a method of analyzing the mineral composition of various rocks.  Much of their practical 
application today is in the field of metallurgy and modifications of the techniques are used in 
ecology, geography, and earth sciences.  Most of the application in biology has been by electron 
microscopists but many important discoveries have been, and continue to be, made using stereology 
and the light microscope (see Aherne and Dunnill, 1982; Steer, 1981; Weibel, 1979).  The following 
exercises have been designed in order to acquaint you with commonly used stereological techniques. 
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Figure 3.1.  A series of three-dimensional objects , sphere; B, cylinder; C, cone; D, ellipsoid) which 
will produce a circle of identical area, E, if cut in the plane indicated by the horizontal lines 

 
Figure 3.2. AA diagram of a circle cut in two of the possible planes of section: along its diameter 
and along a line one half its diameter.  The probability of cutting at a position > 1/2d is much larger 
than the probability of cutting < 1/2d (86.6% versus 13.4%). 
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Although stereology is a powerful quantitative tool you should not be intimidated into believing 
that complex mathematics are involved.  An understanding of statistics is necessary to fully 
appreciate why stereology works but the only prerequisite to applying the techniques to many basic 
problems is the ability to count. 

The fundamental relationship of stereology is volume density.  Volume density (VV) is defined 
as the volume of a component relative to the containing volume = V. component/V. total.  This 
relationship may be illustrated with the following example.  An irregularly shaped cell is contained 
within a cube of tissue of unit dimensions (Figure 3.3).  If the block of tissue is serially sectioned, 
the area of tissue in each section will be constant, A.  Furthermore, the area of the cell can be 
measured on each section, a.  The volumes of both the tissue and cell may then be calculated by 
adding together the serial areas and multiplying by the thickness of each section (t).  Thus, volume 
density is calculated as: 

A 
a  = 

(A)t
(a)t = V V Σ

Σ
Σ
Σ

 

 
Figure 3.3.  Diagram of a hypothetical cell in a cube of tissue.  For the section illustrated the 
area of the cell (a) is shaded, while the area of the tissue (A) is unshaded.  The volumes of tissue 
and cell in that section are the corresponding areas times the section thickness (t).  The 
summations of volumes for all possible sections would be the actual tissue and cell volumes of 
the specimen. 

It is impractical to serially cut tissue and measure every cell of interest, but, if a relatively large 
number of measurements are made on randomly selected cells, you will be able to infer the actual 
volumes of the cells.  The question then becomes how to measure the areas of randomly selected 
sections.  One of the traditional methods is to cut an weigh pieces of photomicrographs or line 
drawings corresponding to the cells of interest.  The weight of the pieces relative to the 
photomicrograph as a whole will be proportional to the area of the cells relative to the tissue as a 
whole.  Of course, the pieces must be cut accurately and carefully weighed and the procedure is time 
consuming and laborious.  Another traditional method is to use a planimeter to carefully outline the 
profiles of the cells of interest in a photomicrograph.  Again, this procedure is somewhat time 
consuming and laborious and you must have access to a planimeter.  A third method, point counting, 
is a stereological technique which will be utilized in the following exercises. 
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Point counting may be done either directly through the microscope or on photomicrographs.  In 
either case a test probe must be superimposed over the image of the specimen.  The test probe 
consists of a set of points, either randomly arranged or frequently in a regular lattice, which are 
superimposed randomly over the image of the specimen.  A convenient probe consists of a square 
lattice (Figure 3.4) in which each line intersection serves as a sample point.  Ideally, the spacing of 
points on the test probe should correspond to the size of the object to be analyzed.  The square 
lattice probe may be used on objects of various sizes by using the corners of individual squares as 
test points (for small objects) or various multiples of squares to correspond with the size of the 
object to be analyzed.  For example, in the lower left corner of Figure 3.4 test probes of dimensions 
12, 22, 32, 42, and 52 units are in heavy outline.  To use point counting in determining volume 
density, you simply orient the test probe randomly over the specimen image and tally the points 
lying over the object of interest and the total number of points over the tissue as a whole. 

 
Figure 3.4.  Illustration of a sample grid probe.  Line intersections indicate sample points.  This 
regular lattice pattern may be used on samples of various sizes by adjusting the number of grids 
used to designate a sample point as illustrated in the lower left hand corner.  [From Sundberg 
(1984).  Reprinted with permission.] 
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 leaf for tallied points total
type tissue for tallied points = V V

 

Notes for the Instructor 

Exercise 1: A Quantitative Comparison of Sun and Shade Leaves (Sundberg, 1984) 
 

Most introductory botany textbooks qualitatively describe the internal anatomy of sun and shade 
leaves as an example of an ecological modification of leaf structure.  Sun leaves, those grown in full 
sunlight, are described as thick in cross-section with a relatively thick and tightly compacted layer of 
palisade mesophyll and a thick layer of spongy mesophyll with relatively small amounts of 
intercellular space.  Shade leaves, those from within the canopy or otherwise shaded, as described as 
being thinner in cross-section with less well developed mesophyll layers and more extensive 
intercellular spaces.  Commercially-prepared microscope slides of sun and shade leaves, available 
from biological supply houses, may be used to demonstrate these anatomical differences 
quantitatively. 
 
Prior to the laboratory: 

1. Prepare photomicrography sets of sun and shade leaves (Figure 3.5; see Appendix A).  Ideally 
each student should have a unique pair of photomicrographs with each micrograph preferably 
taken from a different prepared slide. 

2. Prepare transparent test probe overlays. 

3. Prepare tally sheets (Table 3.1) 
 
In the laboratory: 

1. Distribute one photomicrograph set, test probe, tally sheet, and china marker to each student. 

2. Using a china marker, outline the profile of each tissue region on the paired photomicrographs.  
(This will make it easier for students to tally test points in the subsequent step.) 

3. Orient the test probe randomly over the photomicrograph of the sun leaf (Figure 3.6).  It is 
important that the test probe is randomly oriented with respect to the photomicrograph.  
Stereological procedures are based on probability theory and require that either a probe with a 
random array of sample points is used or, if a regular test probe is used, the probe is randomly 
oriented to the tissue.  This is especially important if there is a regular pattern in the tissue being 
examined. 

4. Count and record the number of sample points overlying each tissue type.  (Each intersection of 
grid lines on the test probe represents a sample point). 

5. Tally the total number of points sampled on the sun leaf. 

6. Repeat steps 3–5 for the shade leaf. 

7. Combine individual student data to obtain class totals. 

8. Calculate the volume density for each tissue type in both the sun and shade leaves (VV). 



 

   

 
Figure 3.5.  Sample student photomicrograph set with photographs of sun (bottom) and shade 
(top) leaves, at identical magnification, mounted together on a card.  [From Sundberg (1984).  
Reprinted with permission.] 

 

 
Figure 3.6.  Sketch of a hypothetical sun-leaf photomicrograph with a superimposed test grid.  The 
various tissue regions are indicated: U, upper epidermis; P, palisade mesophyll; S, spongy 
mesophyll; L, lower epidermis; V, vascular bundle.  Test probe points overlying the upper 
epidermis are indicated by triangles.  
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Table 3.1.  Sample student data tally sheet for sun and shade leaf exercise. 
 

Sun leaf 
Tissue type Point count Volume 

density 
% Leaf volume 

Upper epidermis 
Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

   

Total    

 
Shade leaf 

Tissue type Point count Volume 
density 

% Leaf volume 

Upper epidermis 
Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

   

Total    
 
 

Table 3.2 illustrates the data obtained from the hypothetical leaf diagrammed in Figure 3.6 and 
is typical of student data generated from a single photomicrograph.  Table 3.3 illustrates a typical 
students data for the complete exercise.  Table 3.4 presents a set of combined class data.  These 
data quantitatively verify what was qualitatively described in the textbook.  A total of 5600 points 
were tallied for the shade leaf while 8658 were scored for the sun leaf.  Thus, the shade leaf is 
thinner, having only 65% of the volume of the corresponding sun leaf.  Both the palisade and 
spongy mesophylls are more extensively developed in the sun leaf, having volume density of 
0.396 and 0.187, respectively, than in the shade leaf, whose corresponding volume densities are 
0.261 and 0.162.  Intercellular spaces occupy relatively more volume in the shade leaf (20.5%) 
than in the sun leaf (10.0%). 

Volume density is a probabilistic function whose accuracy is based on the sample size.  In 
general, the larger the sample size the more likely the sample values obtained will approach the 
true values of the parameters being examined.  In fact, we can choose to make the sample as 
accurate as we want by adjusting the sample size.  Suppose you determine from your initial count 
that the volume density of spongy mesophyll in the sun leaf is 0.201 (Table 3.3).  How many 
points must be counted in order to have a reliable estimate of the volume density of spongy 
mesophyll?  This can be determined using the formula:  

E x V
V) - (1 (0.453) = P 2

V
T
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points 180 = 
)10(0.201)(0.

0.201) - (1 (0.453) = P 2T

points 720 = 
)05(0.201)(0.

0.201) - (1 (0.453) = P 2T

where VV is the preliminary volume density, E is the desired level of accuracy (the error you are 
willing to accept), and PT is the total number of points which must be counted to attain that level 
of accuracy.  For example, if you are willing to accept a 10% chance of error for sun leaf spongy 
mesophyll, the number of points necessary is: 
 
 
 
On the other hand, if you want to be 95% confident in your sample, 
 
 
 
Table 3.5 demonstrates that counts of less than 200 are sufficient to obtain 95% confidence for 
volume densities greater than or equal to 0.50.  Counts of this magnitude are often obtainable from 
a single slide (Table 3.3).  By combining individual results to obtain class data sufficient counts 
may be obtained to achieve significant values for all parameters (Table 3.4). 

 
Table 3.2.  Hypothetical data based on Figure 3.6. 

 
Tissue type Point count Volume density 

(VV) 
% Leaf volume 

Upper epidermis 
Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

18 
49 
14 
56 
32 
15 

0.098 
0.266 
0.076 
0.304 
0.174 
0.082 

9.8 
26.6 
7.6 
30.4 
17.4 
8.2 

Total 184 1.000 100.0 

Exercise 2: Correlation of Cell Type to Specific Gravity in Wood 

The physical properties of various woods are due to their cellular composition and 
arrangement.  Stereological techniques may be used to quantify cell composition of woods which 
can in turn be compared with certain physical characteristics.  In this exercise the volume density 
of vessels, tracheids, fibers, ray parenchyma and wood parenchyma are calculated for several 
different woods.  The volume density of each cell type is then plotted against specific gravity to 
determine if a correlation exists. 

Commercially-prepared microscope slides of various woods will be examined in cross-section.  
Students must first be able to identify the different cell types.  Vessels, tracheids, and fibers are all 
dead cells at maturity, therefore they will lack cytoplasmic contents in prepared slides.  Vessels 
have the largest diameter and will frequently appear round in cross section.  Fibers are very small 
in cross section and their uniformly thick walls often nearly occlude the cell lumen.  Tracheids are 
intermediate in size.  Both parenchyma types will be recognized by their cell contents.  The ray 
parenchyma forms linear files of cells in cross section while the wood parenchyma usually occurs 
in patches often surrounding vessel members.  Tables of specific gravity and other wood 
properties may be found in various wood products texts (Table 3.6). 
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Table 3.3.  Representative student data. 
 

Leaf type Tissue type Point count Volume density % Leaf volume
Sun Upper epidermis 

Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

28 
105 
30 
52 
25 
19 

0.108 
0.405 
0.116 
0.201 
0.097 
0.073 

10.8 
40.5 
11.6 
20.1 
9.7 
7.3 

 Total 259 1.000 100.0 
Shade Upper epidermis 

Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

22 
42 
28 
29 
38 
22 

0.122 
0.232 
0.155 
0.160 
0.210 
0.122 

12.2 
23.2 
15.5 
16.0 
21.0 
12.2 

 Total 181 1.001 100.1 
 

Table 3.4.  Representative class data. 
 

Leaf type Tissue type Point count Volume density % Leaf volume
Sun Upper epidermis 

Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

1069 
3430 
870 
1619 
870 
800 

0.123 
0.396 
0.100 
0.187 
0.100 
0.092 

12.3 
39.6 
10.0 
18.7 
10.0 
99.8 

 Total 8658 0.998 99.8 
Shade Upper epidermis 

Palisade mesophyll 
Vascular tissue 
Spongy mesophyll 
Intercellular space 
Lower epidermis 

838 
1459 
422 
909 
1146 
826 

0.150 
0.261 
0.075 
0.162 
0.205 
0.148 

15.0 
26.1 
7.5 
16.2 
20.5 
14.8 

 Total 5600 1.001 100.1 
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Table 3.5.  Points required for a given level of accuracy. 
 

 
Volume density (VV) 

Test points required (PT) 

 E = 0.10 E = 0.05 
0.95 
0.75 
0.50 
0.25 
0.10 
0.05 
0.01 
0.005 

2 
15 
45 
136 
408 
861 
4485 
9015 

10 
60 
181 
544 
1631 
3443 

17,938 
36,058 

 
 

Table 3.6.  Some properties of various woods (after Newell, 1927). 
 

 
Species 

Specific gravity 

 Green Oven-dry 
Tilia americana 
Ulmus americana 
Larix occidentalis 
Quercus alba 
Robinia pseudoacacia 

0.33 
0.44 
0.48 
0.60 
0.66 

0.40 
0.34 
0.59 
0.71 
0.71 

 
 
Prior to the laboratory: 

1. Prepare photomicrographs of various woods in cross section (Figure 3.7; see Appendix A).  
Five or more individual micrographs should be prepared for each wood. 

2. Prepare transparent test probe overlays. 

3. Prepare tally sheets (Table 3.7). 
 
In the laboratory: 

1. Distribute photomicrographs, test probes, tally sheet, and china markers to students.  Students 
should be divided into groups with each group given the responsibility for one species (i.e., 
each student in a group should have a different photomicrograph of the same species). 

2. Orient the test probe randomly over the photomicrograph. 

3. Using the china marker, outline the profiles of the less conspicuous groups of cells (e.g., 
tracheids, fibers, and wood parenchyma). 

4. Count and record the number of sample points overlying each cell type. 

5. Tally the total number of points sampled. 
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6. Combine the individual student data within each group to obtain summary data for each 
species. 

7. Calculate the volume density for each cell type of each species. 

8. For each cell type plot the calculated volume density against the corresponding specific 
gravity. 

9. Calculate the equation and correlation for each graph produced (Appendix B). 
 

 
 
 

Figure 3.7.  Photomicrograph of Quercus wood in cross-section. 
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Table 3.7.  Sample student data tally sheet for wood structure exercise. 
 

Species examined: 
 Vessels Tracheids Fibers Ray 

parenchyma 
Wood 

parenchyma 
Total 

Your data       
Group data       
Volume 
density 

      

 
 

Table 3.8 illustrates typical student data for one micrograph of Quercus as well as the 
combined group data of students for that species.  In Figure 3.8 the volume density of each cell 
type is plotted against the specific gravity for each species.  For example, the specific gravity of 
oven dry Quercus is 0.71 while the volume densities of each cell type are: vessels, 0.05; tracheids, 
0.19; fibers, 0.47; ray parenchyma, 0.14; and wood parenchyma, 0.14.  These values are indicated 
by a triangle on the appropriate graphs.  It can be seen from the graphs that a good positive 
correlation exists between volume density of fibers and specific gravity (r = 0.95).  In other words, 
as the relative volume of fibers in a wood increases, the specific gravity also increases.  The 
graphs also show that there are reasonable negative correlations between specific gravity and 
volume of tracheids (r = 0.79) and volume of vessels (r = 0.83).  In both cases the specific gravity 
decreases as the relative volume of tracheids or vessels increases. 

 
Table 3.8.  Occurrence of various cell types on Oak wood. 

 
 Vessels Tracheids Fibers Ray 

parenchyma 
Wood 

parenchyma 
Total 
points 

Student 1 15 178 124 28 43 388 
Group total 
(10 students) 

197 694 1681 517 497 3586 

Volume density 0.06 0.19 0.47 0.14 0.14  
% of wood volume 6 19 47 14 14  

 
 

Both of the exercises outlined above demonstrate how the relative volumes of various 
components may be estimated by calculating volume density.  These relative values can easily be 
converted into absolute values if one of the parameters can be measured.  An example of such a 
conversion is a recent study of stomatal distributions in various xerophytes (Strobel and Sundberg, 
1984). 

Stomates are the openings in the surface of aerial plant parts, especially leaves, through which 
gases are exchanged and water vapour is lost.  It seems reasonable to expect that plants growing in 
arid environments would have fewer stomates per unit area so as to reduce water loss.  Indeed, this 
is a xeromorphic adaptation described by plant anatomists into the second half of this century 
(Eames and MacDaniels, 1947).  More recently it has been shown that many xerophytic plants 
actually have an increase in the number of stomates per unit surface area (Cutter, 1971; Esau, 
1965; Fahn, 1974).  We proposed to test the hypothesis that succulent and non-succulent 
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xerophytes evolved different strategies to deal with water stress, specifically that succulents tend 
to have a reduced stomatal density while the stomatal density in non-succulents is increased. 

Stomatal densities could easily be determined in most cases by making epidermal peels, 
however, in many xerophytes the stomates are sunken below the epidermis (e.g., Ficus) or 
arranged in complex sunken crypts (e.g., Ammophila and Nerium) (Figure 3.9).  In the latter two 
instances it is impossible to determine stomatal densities from peels, therefore stereological 
techniques were used to determine the volume density of stomates (guard cells) in the epidermis.  
Ficus served as a control because in this case individual stomates are sunken beneath the 
epidermis.  Although the somates themselves are not visible in a peel of Ficus, their density can 
easily be estimated from the number of “holes” in the peel.  A single stomate is associated with 
each “hole.” 
 
 

 
 

Figure 3.8.  Sample plots of volume density of cell types versus specific gravity of wood for 
Basswood, Elm, Larch, Oak, and Black Locust based on actual class data.  Data for Oak (Table 3.6) 
is illustrated by triangles.  A, fibers; B, tracheids; C, vessels; D, ray parenchyma; E, wood 
parenchyma; m = slope; r = correlation coefficient.
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Figure 3.9.  Photomicrograph of leaf cross-sections of Nerium oleander.  Stomates are 
indicated by arrows. 

 
In order to determine the stomatal density on leaves with encrypted stomates, slides of leaf 

cross-sections were used.  An ocular grid test probe was superimposed over randomly selected 
fields and counts of epidermal cells and guard cells were tallied.  After computing the volume 
density of guard cells to total epidermis the average epidermal cell area was determined using a 
calibrated ocular micrometer.  Volume densities were then transformed to absolute densities using 
the formula D = 1/a(VV), where D is the stomatal density, a is the average epidermal cell area, and 
VV is the volume density of stomates. 

The data are summarized in Figure 3.10.  Data for Crassula and the three species of Kalanchoe, 
all succulents, were obtained directly from peels and demonstrate a reduced stomatal density 
compared to average mesophyte leaves, although stomates occur on both surfaces of the leaves.  In 
the remaining three species stomates occur only on the lower surface.  In Ficus the density 
determined stereologically (146/mm2) was nearly identical to that determined directly from peels 
(150.5/mm2).  The densities determined for Ammophila and Nerium are among the highest 
recorded for any plant (cf. Popham, 1966). 
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Figure 3.10.  Average stomatal density on leaves of seven xerophytes.  Crassula and Kalanchoe are 
succulents with stomates present on both the upper (U) and lower (L) leaf surfaces.  Ficus, Ammophila, 
and Nerium are all non-succulents with stomates occurring only on their lower leaf surfaces.  Data 
obtained directly from epidermal peels (La) and stereology (Lb) are presented for Ficus.  [From Strobel 
and Sundberg (1984).  Reprinted with permission.] 

Exercise 3: Estimation of the Surface Area to Volume Ratio of Mesophyll Cells 

in Sun and Shade Leaves 

A second important stereological relationship is surface density (SV).  This relationship 
defines the surface area to volume ratio and is calculated by the formula SV = 2(I/L), where L is 
the total length of test lines used and I is the total number of intersects of the test line with the 
image boundary (Toth, 1982; Weibel, 1973). 

In Exercise 1 we determined that there are significant differences in the relative volumes 
occupied by various tissues of sun and shade leaves.  We also know that these leaves differ in size 
and shape: shade leaves are generally broader but thinner.  It is reasonable, therefore, to suspect 
that the sizes of individual cells in a particular tissue might also vary with the environment. 

Since surface to volume ratio is affected by size (area increases by the square while volume 
increases by the cube), and this ratio is important in transport processes across the cell membrane, 
this morphological relationship is of great interest for many physiological processes. 
 
Prior to the laboratory: 

Prepare photomicrographs, test probe overlays, and tally sheets.  The same micrographs and 
probes prepared for exercise one may be used although it may be easier for the student to identify 
individual cells, especially in the palisade mesophyll, on micrographs of higher magnification. 
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In the laboratory: 

1. Distribute the appropriate materials. 

2. Orient the test probe randomly over the specimen and tape it securely in place. 

3. Using the china marker, outline the area which includes all test lines passing over the 
mesophyll tissue. 

4. Count and record the number of test probe line segments (l) included in 3 above.  Be sure to 
include both the horizontal and vertical directions. 

5. Count and record the number of cell wall intersects between mesophyll cells and the test 
probe lines.  Where adjacent cells are tightly appressed count two, although there may appear 
to be only a single wall.  Again be sure to count intersects in both the horizontal and vertical 
directions. 

6. Measure and record the length of the test probe line segments. 

7. Calculate and record the total length of line segments (LT = number of segments, l, × segment 
length) and surface density (2I/LT). 

 
 Typical data for a group of four students are presented in Table 3.9.  The average surface 

density of mesophyll cells in the shade leaf is 0.73 mm2/mm5 while in the corresponding sun leaf 
it is 0.37 mm2/mm3.  In other words, there is twice the surface area per unit volume in shade-leaf 
mesophyll cells as in sun-leaf mesophyll—an indication that the former cells may be smaller and 
that their diffusion rates may be greater. 

 For research purposes the values obtained for SV must be corrected for magnification.  The 
formula for this, as well as for the calculation of the sample size necessary for a given level of 
error, may be found in Weibel (1979). 

 
Table 3.9. Surface density of mesophyll in sun and shade leaves. 

 
Type Counts 

(I) 
Segment 

(l) 
Segment 
length 
(mm) 

2I LT 2I/LT 
(mm2/mm3)

Shade 320 
324 
538 
434 

234 
219 
216 
276 

5 
5 
5 
5 

640 
648 
1076 
710 

1170 
1095 
1080 
880 

0.55 
0.59 
1.00 
0.81 

Total    3074 4225 0.73 
Sun 

 
 

368 
336 
396 
376 

366 
455 
438 
482 

5 
5 
5 
5 

734 
791 
834 
858 

1830 
2275 
2190 
2410 

0.40 
0.35 
0.38 
0.36 

Total    3217 8705 0.37 
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APPENDIX A 
Materials 

 

Photomicrographs of sun and shade leaves: 

I have used commercially-prepared slides of Acer sun and shade leaves.  Suitable 
magnification is obtained by enlarging 35-mm negatives, exposed at 100X magnification, to 
produce full frame, ca. 5" × 7", prints.  Each photomicrograph set is prepared by mounting glossy 
prints of one sun leaf and one shade leaf on a piece of artist's board.  The mounted prints are then 
laminated in plastic so that students may mark directly on the micrographs with china markers or 
water soluble pens when tallying data.  Transparent test probe overlays may be made by making 
photocopies of appropriately-scaled graph paper onto clear plastic sheets.  Alternatively, a regular 
grid may be ruled onto clear plastic sheets using permanent ink.  The spacing of points on the test 
probe should be approximately the size of the object to be analyzed; in this exercise the spacing 
should be approximately the width of a mesophyll cell on the photomicrograph. 
 

Photomicrographs of woods: 
 
I have used commercially-prepared cross-sections of the following woods:  Larix, Quercus, 

Robinia, Tilia, and Ulmus.  Random fields of each slide were photographed at 100X using a 35-
mm photomicroscope set-up.  The negatives were enlarged to print four 8" × 10" prints from each 
frame.  At this magnification the test probes from the above exercise may be used. 
 

Materials per class of 36 students: 

Photomicrographic set-up 
Black and white film (e.g., Kodak plus-X or panatomic-X) (2 rolls, 36 exposure) 
Enlarging paper (e.g., Kodabromide F-3, 8" × 10") (36 sheets) 
Transparent grid sheets (Thermofax or equivalent photocopies of standard 0.5-cm graph paper on 
8" × 10" transparent sheets are adequate) (36) 
China markers or water-soluble pens to aid in scoring (36) 
Tally sheets 
Prepared slides of sun and shade leaves and wood cross-sections: 

 Carolina Biology Supply 
 2700 York Road 
 Burlington, NC 27216 

 Triarch Prepared Microscope Slides 
 P.O. Box 98 
 Ripon, WI 54971 
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APPENDIX B 
Calculations of Slope and Correlation Coefficient 

 
The slope of a line may be determined graphically by carefully 

plotting the data and “eyeballing” the best-fitting line.  For instance, the 
following data may be plotted as below: 
 

X Y 
4 
6 
8 

10 
12 

5 
7 

10 
12 
15 

 
 
The slope of this line can be estimated by computing the “rise over run.”  Choose two parts on the line 

(e.g., P1, P2) and drop vertical lines from these points to the x-axis and horizontal lines to the y-axis as 
illustrated above.  In this case the coordinates of P1 and P2 are (2, 2.3) and (11, 13.8), respectively.  Rise over 
run = (y2 - y1)/(x2 - x1) = 12.5/10 = 1.25.  Because the sign of the slope is positive, y increased with x.  If the 
sign were negative, y would decrease as x increased. 

 A more accurate way of estimating the slope (m) is to use the method of “least squares.”  The slope is 
calculated by the equation:  m = SP/SSx.  Using the data above the calculations would be as follows: 

1.25 = 50/40 = SS SP/= (m)  slopethe therefore,
 

40 = 1600/5 - 360 = SS
 

1600 = 40 = )X(    

 
360 = 12 + 10 + 8 + 6 + 4 = X    

 
/n)X( - X = SS

 
50 = (40)(49)/5 - 442 = SP

 
5 = n    

 
49 = 15 + 12 + 10 + 7 + 5 = Y    

 
40 = 12 + 10 + 8 + 6 + 4 = X    

 
442 = 15) x (12 + 12) x (10 + 10) x (8 + 7) x (6 + 5) x (4 = XY    

 
Y)/n X( - XY = SP

X

X

22

222222

22
X

Σ

Σ

ΣΣ

Σ

Σ

Σ

ΣΣΣ
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The correlation coefficient (r) is calculated by the equation: 
 

 
0.99 = 

543 x 360
442 = r therefore

 
 

543 = 15 + 12 + 10 + 7 + 5 = Y

 
 

ly.respective 360, and 442 are and above calculated  wereX and XY
 
 

)Y( )X(
XY = r

222222

2

22

Σ

ΣΣ

ΣΣ

Σ

 
 
The correlation coefficient is a number in the range from -1.0 to +1.0.  A positive correlation 

indicates a direct relationship while a negative correlation indicates an inverse relationship.  If r = 
0 there is no correlation, therefore, the closer r is to │1│, the stronger the relationship. 
 




