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Background color adaptation in poikilotherms is a great subject for investigative physiology course. The physi-
ological color change is relatively fast and reversible. Moreover, the control mechanisms are complex and diverse 
among species, providing many follow-up studies for research projects. Dermal melanophores in Fundulus het-
eroclitus are responsible for darkening in black background and easily identified for indexing under low magni-
fications. To further explore organismal observations, isolated scales can be studied in vitro addressing questions 
concerning cell signaling and cytoskeletal motor proteins. This following study presents introductory experiments 
and proposes a model that integrates physiology and cell biology for investigative biology labs.
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	  The experiments described for this session were origi-
nally designed for two separate courses taught in our depart-
ment, BISC316 (Experimental Physiology) and BISC315 
(Experimental Cell Biology). Both courses, along with 3 
other investigative lab courses (Molecular Biology, Ecolo-
gy, Genetics) have provided upper level biology majors with 
intensive, faculty-taught and stand-alone laboratory courses 
that focus on the scientific process and methods in several 
biology disciplines. Students in the BA degree program are 
required to take one of these laboratory courses, usually dur-
ing their senior year. As of fall 2009, all of these courses 
have been enhanced to 3 credits, and are also now designat-
ed as Discovery Learning Experience (DLE) courses, a new 
university requirement. For both BISC316 and BISC315, the 
basic format is that students spend the first half of the semes-
ter doing a core series of “prescribed” laboratory exercises, 
followed by small group independent projects during the 
second half of the semester.
	 Developing a new curriculum for Experimental Physiol-
ogy required a model system that can be explored with ex-
perimental research questions concerning a whole animal. 
Fundulus heteroclitus, sometimes called mummichog or 
killifish, live in salt marshes in Delaware and exhibit physi-
ological color changes when exposed to various background 
colors (1-3). This adaptation process is reversible and rela-
tively fast compared to other teleosts (4, 5), which fits well 
for a 3-hour classroom investigation. Among other verte-
brates, and even in other teleosts the neural and endocrine 
control mechanisms that regulate color change are complex 
and diverse (6-8). For example, many teleosts are neuronally 
regulated, while amphibians and reptiles are predominantly 
controlled by circulating hormones. Moreover, the ultimate 

shade (paling versus darkening) is determined by the spe-
cific receptors located in the pigments cells. This complex 
nature of the color change in animals in turn provides many 
follow-up studies for independent research projects. Since 
Fundulus heteroclitus resides in a temperate zone in the 
field, environmental factors, such as ambient temperature, 
salinity, and photoperiod, have also been of much interest to 
students as they design independent research projects. For 
students in Experimental Cell Biology, the focus of a num-
ber of student projects has been on cell signaling associated 
with neuronal control mechanisms, or on visualization and 
pharmacological manipulation of the cytoskeleton of dermal 
melanophores, which underlie the adaptive color changes.
	 The dermal melanophores in Fundulus heteroclitus are 
responsible for darkening and paling of the dorsal skin when 
subjected to a black or white background respectively. Ani-
mals darken as melanosomes (melanin containing vesicles) 
migrate from the cell center toward the periphery, whereas 
they become pale as melanosomes relocate toward the nucle-
us of the melanophore. The degree of pigment distribution 
can be easily detected under low magnification of fish scales 
collected from animals adapted to a light or dark background 
color, and these distributions can be scored from 1-5 as a 
melanophore index (MI) (9). The melanophores in Fundulus 
fish scales are large (around 100 mm in diameter), flattened 
and stellate in shape so that often times the length of the 
pigment trail within a cell process is measured to score a dis-
persal status. In fact, the Fundulus melanophore was one of 
the first model systems used in early studies on cytoskeletal 
biology, demonstrating the critical role of microtubules, for 
example, in intracellular migration of pigments (10-12). Un-
til the time of this discovery in Fundulus, the pigment move-
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to form a chamber. They are available in several sizes and 
in multi-well formats and have two ports that can be used to 
perfuse solutions through the chamber. We have found that 
these chambers can be re-used several times. To exchange 
solutions a pipettor can be used to add solution to one port 
with a Kimwipe or other absorbent paper positioned over the 
opposite port to wick away the old solution. A more elabo-
rate perfusion system can be constructed with blunted sy-
ringe needles positioned over the ports with modeling clay.
	 Under the 20x or 40x objective, scales can be viewed 
to monitor multiple or single melanophores. Students have 
routinely conducted several experiments to demonstrate the 
neural regulation of melanosome movement. A 1-5 numeri-
cal scale can be used to quantify the extent of dispersal with 
full aggregation corresponding to 1 and full dispersal to 5. 
The experiments include addition of exogenous norepineph-
rine (10-8 to 10-6 M) and substitution of the bathing solution 
with a high potassium solution, which causes depolarization 
and release of endogenous neurotransmitter. Both of these 
treatments cause pigment granule aggregation within min-
utes, due to the stimulation of alpha-type adrenergic recep-
tors. In contrast, the phosphodiesterase inhibitor caffeine 
(10 mM), or other treatments that raise intracelluar levels 
of cAMP, will cause dispersal of the granules. Other, more 
complex experiments can be designed to demonstrate the 
specific function of alpha-adrenergic receptors (eg, alpha 
versus beta agonists or receptor antagonists).
	 Another line of experiments can be designed to inves-
tigate the role of cytoskeletal elements in pigment granule 
movements. Colchicine or related compounds (demecolcine) 
disrupt the microtubule network and cytochalasins similarly 
disrupt actin microfilaments. Thus, these compounds can be 
used to test the relative role of microtubules and actin fila-
ments in dispersal or aggregation. Generally, one can pre-
disperse or pre-aggregate melanophores before applying the 
inhibitor, then test for responses to high potassium or caf-
feine as above. Finally, some student teams have comple-
mented these functional studies with attempts to image the 
cytoskeleton, using immunohistological methods. This has 
proven difficult, however, because of the overlying epithelial 
cell layer and because the pigment granules themselves will 
tend to obscure the underlying cytoskeletal tracts.
	 We believe that the Fundulus melanophore system pro-
vides a very useful model for student independent investiga-
tion and experimental design, and also provides an excel-
lent way to integrate physiological principles (adaptive color 
change, neuronal regulation) with cell biology (membrane 
receptors and channels, cytoskeletal motors, etc).  
	 The Student Outline presented below details exemplary 
experiments used for introductory investigations of physi-
ological color changes in lower vertebrate (teleosts and 
lizards) and invertebrates (fiddler crabs). These two experi-
ments are part of 6 “prescribed” lab exercises that students 
in Experimental Physiology perform at the beginning of the 
semester.

ment inside teleost chromatophores was thought to take place 
in response to contraction and relaxation of the radial muscles 
anchored on the cell membrane as shown in cephalapods.
	 In many teleosts, including Fundulus heteroclitus, dermal 
melanophores are innervated by postganglionic sympathetic 
fibers (13-17) and sympathetic stimulation, mediated by  
a2-adrenergic receptors, induces aggregation of the melano-
somes (18-23). Any agonist that enhances the cAMP levels in 
the cell causes the dispersion of melanosomes (24), while an-
tagonists that decrease the cAMP levels result in melanosome 
aggregation. Other agents, such as melanophore stimulating 
hormone (MSH) or melanin concentrating hormone (MCH), 
have been consistently shown to mediate background color 
changes in other teleosts (25, 26) and amphibians (9, 27, 28).  
However, the hormonal mediation for physiological color 
changes in Fundulus is yet to be determined (29, 30).

Going Further

	 A number of additional experiments, appropriate for either 
Experimental Physiology or Experimental Cell Biology, have 
been designed by students in these classes. Both courses re-
quire that students, working in small teams, propose and carry 
out 5-6 week independent projects during the last half of the 
semester. In general, the focus of these studies has been on the 
neuronal regulation of melanosome movements and on the 
role of the cytoskeleton in these movements. Because these 
are not part of the “prescribed” core of experiments, detailed 
protocols are not included in the Student Outline below. How-
ever, the following summary should provide a good starting 
point for those interested in expanding these studies.
	 Essentially, we use a variety of microscope types (stereo, 
standard upright compound, inverted compound) to view 
single isolated scales during different kinds of treatments. 
Some of our microscopes are equipped with digital cameras 
or video cameras, so that images can be used for data analy-
sis. To capture rapid changes in pigment distribution we use 
different approaches to manipulate solution changes. With in-
verted microscopes, multi-well culture plates work very well. 
Solutions can be aspirated and replaced quickly in 96-well 
plates without removing the scales; while the scale may move 
out of focus, it can usually be relocated quickly to follow the 
time course of pigment granule movements. For more com-
plete exchange or washout, aspiration and replacement can be 
repeated. Alternatively, scales can be moved from one well to 
another with fine forceps. This approach is easier with larger 
well formats (e.g., 24-well plates). Individual wells can be 
pre-filled with the various test solutions to be used.
	 With standard upright microscopes chamber slides can be 
constructed to fit the microscope stage (since scales are de-
rived from a heterotherm, a heated stage is not necessary). 
One approach is to use stopcock grease to build a shallow 
well on the slide, with the scale contained in the well under 
a coverslip. A cleaner chamber can be made using CoverWell 
perfusion chambers available from Molecular Probes Inc. 
(now part of InVitrogen, Inc). These chambers are silicon 
gaskets that are simply pressed on to a glass microscope slide 
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Student Outline
Chromatophores and Color Changes: I. Background Color Adaptation

Key Concepts

	 Chromatophores in poikilotherms
	 Physiological vs. morphological color change
	 Translocation of cargos in cells

Materials

	 Killifish
	 Lizard
	 Small dishpan (black and white) with a clear lid
	 Air pump fitted with aerators
	 Small fish net
	 Small clear container with a lid

Background

	 Many lower vertebrates and invertebrates exhibit integumentary color changes in response to changes in background color 
(Fig. 1). This ability to adapt to an environmental factor (i.e., substrate color) is a primary attribute of a “living” organism, and 
is often used for various reasons, such as camouflage, advertising, protection from harmful radiations and thermoregulation.

	 There are two types of integumentary color changes; physiological and morphological. Whereas morphological color change 
is a long-term process, in weeks or months, resulting from a change in pigment amount and/or pigment cell number (prolifera-
tion or apoptosis), physiological color change takes place rather rapidly caused by translocation of existing pigments within the 
cell. During a fast background color adaptation, the pigment vesicles containing motor proteins (i.e., kinesin, dynein, myosin) 
travel along the intracellular tracts, microtubules and actin filaments. As pigment vesicles move toward the cell periphery (dis-
persal state, Fig. 2a), they impart the pigment color to the animal. For example, when melanosomes (black pigments) move 
toward the cell periphery, the skin becomes dark brown or black. Then as they relocate toward the nucleus (aggregation state, 
Fig. 2b), the animal appears pale.

								        (a) 				                      (b)
Figure 2. Phase contrast images of dermal melanophores in the killifish, Fundulus heteroclitus:  (a) 
with melanosomes dispersed throughout the cell; (b) with melanosomes concentrated in the center of 
the cell. (Courtesy of Dr. Gary Laverty)

Figure 1. The killifish (Fundulus heteroclitus) 
exposed to white vs. black  background for 1 
hour.  (Courtesy of Dr. Gary Laverty)
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	 In most cases, dermal chromatophores are responsible for physiological color change.  Three types are well defined in 
poikilotherms; melanophore, xanthophores, and iridophores. Each chromatophore synthesizes and stores different pigments in 
pigment organelles; 1) melanophores – melanin (brown to black pigments), 2) xanthophores – carotenoid, pteridine (yellow or 
orange pigments), 3) iridophores – guanine, purine in reflecting platelets.

	 Melanophores are richly populated in the dorsal skin of the Fundulus heteroclitus, giving a darker appearance than other 
areas. Dermal chromatophores in lizards are relatively large and arranged into “dermal chromatophore units”, a basket-like 
form; each unit has three types of chromatophores (xanthophores, iridophores, melanophores). These three distinct pigment 
cells are arranged in layers, xanthophores being most superficial undergirded by iridophores that lie above large melanophores. 
As melanosomes in melanophores aggregate, the color of iridophores and xanthophores represent the primary color for the skin. 

	 In the following experiment we will define the time course of the physiological color change in animals subjected to black 
or white background. The temporal patterns will be compared between darkening vs. paling process as well as between animal 
species (fish vs. lizard).

Experimental Protocol

I. 	 Time course for color change in fish (Fundulus heteroclitus) (Trial #1-3)

•	 Darkening process (from white to black pan)
◦◦ Take 8 fishes from the main tank and place them in white dishpan fitted with aerator for 20 min, keeping the handling 
stress at minimum.

◦◦ Transfer 4 fishes to black dishpan at time “0”. Observe the color change of the dorsal skin and determine the color 
index (1-5, 5 being the darkest) every 30 seconds for 5 minutes or until you obtain 3 identical readings. The animals 
in white background will serve as “negative” control (Fig. 3).

•	 Paling process (from black to white pan)
◦◦ First, return 4 pale fishes (negative control) in the white dishpan back to the main tank.
◦◦ Transfer the darkened fishes from the black dishpan into the white pan, and check the color index every 30 seconds 
until everyone appears pale (fully recovered; Index “1”).

		  * Repeat this experiment twice in order to minimize subjectivity in reading.

Figure 3. Skin color index 1. (Courtesy of Kyle Bruffy)
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II.	 Time course for color change in lizard (Anolis carolinensis)

•	 Darkening process (from white to black pan)
◦◦ Take one lizard from the main terrarium and place in a small clear plastic container housed in white dishpan for 20 
min in order to establish the most paled color (skin color index 1).

◦◦ Transfer the clear tank to black background; this is time 0.
◦◦ Observe the “dorsal” skin color of the lizard and determine the color index (1-5, 5 being the darkest) every 5 minutes 
for one hours or until you obtain 3 identical readings. The lizard in the white pan will serve as a negative control 
(“green” hue). Make sure not to “disturb” the animals while observing

Table 1. Time course for integumental color changes in Fundulus heteroclitus. Animals were subjected 
to black background, and were transferred to white background  when (*) fully adapted to the black 
background.

	 Trial #1
 

Time (min)
Skin Color Index

Fish 1 Fish 2 Fish 3 Fish 4 Mean SD SEM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0* (0)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
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	 Trial #2
 

Time (min)
Skin Color Index

Fish 1 Fish 2 Fish 3 Fish 4 Mean SD SEM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
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4.0

4.5
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Trial #3

Time (min)
Skin Color Index

Fish 1 Fish 2 Fish 3 Fish 4 Mean SD SEM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0* (0)
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2.0
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4.0

4.5

5.0
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Table 2. Time course for integumentary color changes in Anolis carolinesis subjected to black back-
ground.

 
Time (min)

Skin Color Index
Lizard 1 Lizard 2 Lizard 3 Lizard 4 Mean SD SEM

0

5

10

15

20

25

30

35

40

45

50

55

60

Related Articles

Connolly, C.J. 1925. Adaptive changes in shades and color of Fundulus. Biological Bulletin 48:56-77.
Fingerman, M. 1970. Comparative physiology: Chromatophores. Annual Review in Physiology 32:345-372.
Hadley, M.E., and J.M. Goldman. 1969. Physiological color changes in reptiles. American Zoologist 9:489-504.
Hill, A.V., J.L. Parkinson, and D.Y. Solandt. 1935. Photo-electric records of the colour change in Fundulus heteroclitus. Journal 

of Experimental Biology 12:397-399.
Parker, G.H. 1943. Coloration of animals and their ability to change their tints. The Scientific Monthly 56:197-210.
Parker, G.H. 1944. The time factor in chromatophore responses. Proceedings of the American Philosophical Society 87:429-434.
Parker, G.H. 1955. Background adaptations. The Quarterly Review of  Biology 30:105-115.

Chromatophores and Color Changes: III. Neurohormonal control of dermal melanophores

Key Concepts

	 Dermal chromatophores
	 Signal transduction pathway for peptide hormones
	 Actions of melanocyte stimulating hormone (MSH)
	 Sympathetic neurotransmitter/adrenergic receptors

Materials

	 Killifish
	 Lizard
	 Small dishpan (black and white) with a clear lid
	 Air pump fitted with aerators
	 Small fish net
	 Dissecting scope
	 96-well culture plate
	 Pipetman for 200 ml with tips
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	 Kimwipes
	 Fine pair of forceps
	 Fish saline
	 Amphibian Ringer
	 Caffeine (10 mM)
	 MSH (0.1 g/ml)

Background

	 The major agents mediating the physiological color change in animals are hormones and neurotransmitters. Several peptide 
hormones have been identified to induce dispersion or aggregation in dermal melanophores in lower vertebrates. Melanocyte 
stimulating hormone (MSH), which is released from the intermediate lobe of the pituitary gland, seems to be the major hormone 
responsible for darkening the skin in most vertebrates. In addition, melanin-concentrating hormone (MCH) was proposed to 
mediate the skin paling process in some teleosts. In crustaceans, however, pigment dispersing or aggregating (or concentrat-
ing) hormones are produced and released from the sinus gland in the eyestalks upon stimulation by neurotransmitters, such as 
norepinephrine, serotonin or dopamine.

	 In many bony fishes, sympathetic nerves innervate dermal melanophores.  Denervation of sympathetic branches to dermal 
scales blocks the induction of aggregation in melanophores by norepinephrine. While many amphibians and reptiles are devoid 
of sympathetic inputs to dermal chromatophores, the cells respond to adrenergic agonists with melanosome aggregation or 
dispersion depending on the location in skin. 

	 These hormones and neurotransmitters (peptides, catecholamines) serve as the first messengers working on the cell surface. 
Upon binding to its own membrane receptors the signal is transferred to the second messengers (i.e., cAMP), resulting in the 
translocation of pigment vesicles as the ultimate cellular response. While factors that increase the level of cAMP induce dis-
persion of melanosomes, ones that reduce the cAMP level cause the aggregation of pigment vesicles. For example, forskolin, 
which increases activity of the adenyly cyclase, induces melanosome dispersion. Caffeine (or IBMX) also causes melanosome 
dispersion by decreasing the phosphodiesterase activity, which results in increase in the cAMP level. The process of transloca-
tion is in turn coordinated by simultaneous activation or deactivation of the motor proteins (kinesin and myosin for dispersion, 
dynein for aggregation).
	
	 In the following experiment, we will first examine various dermal chromatophores in 3 animal species then explore possible 
control mechanisms for peptide hormones and neurotransmitters mediating physiological color change in lower vertebrates.

Experimental Protocol

I.		 Observation of dermal melanophores in dorsal scales of killifish (Fundulus heteroclitus) subjected to black vs. white 
background

•	 Prepare one fully darkened and one fully paled fish according to the time course obtained in the previous experiment.
•	 Add 100 ml fish saline to 8 wells (A4 → D4 for “B” scales, A7 → D7 for “W” scales) on a 96-well tissue culture plate.
•	 When fishes are fully adapted to the background color, wrap the fish with a wet paper towel while exposing the dorsal 

skin. Collect with a pair of fine forceps four scales from the dorsum between the pectoral fin and pelvic fin then trans-
fer them into the designated wells previously loaded with fish saline.

•	 Place the tissue culture plate under the dissecting scope and observe the appearance of the whole scale. These fish 
scales are bony plates derived from the dermis, and covered superficially by epidermal cell layer (mucus cells, kera-
tocytes).

•	 Draw a simple sketch of a scale. What type of scale is this (cycloid or ctenoid)? Label dermal melanophores as well 
as other prominent structures (radus, circulus, focus). Make a note of which area of the scale is covered by dermal 
melanophores.

•	 Count the total number of melanophores, and classify the cells into three categories;
◦◦ 	 Punctate (fully aggregated, Stage 1)
◦◦ 	 Intermediate  (Stage 2-3)
◦◦ 	 Stellate (fully dispersed, Stage 4-5)

•	 Compare the distribution of the cells at each category between pale and dark fish.
•	 Repeat the observation of scales 1 hour post “denervation” and make a note whether the melanophore index remained 

constant or not.
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Q1. If the punctate melanophores became dispersed, then what does this implicate?
Q2. If the stellate melanophores became punctate, then what does this suggest?
Q3. If the melanophore index remained the same, then what does this mean?

II. Observation of dermal chromatophores in sand fiddler crabs (Uca pugilator)

•	 Take one male crab from the main tank, and place it in a small (or medium) Petri dish.
•	 Examine under the dissecting scope ALL chromatophores seen through the cuticle on the anteroventral surface of the 

second walking leg.

Q1. How many different types of chromatophores can be detected under the dissecting scope?
Q2. How are they different in tint, shape, size and number?

III. Effects of drugs on dermal melanophores in lizards (Anolis carolinensis).

•	 Preparation of skin pieces: the instructor will harvest skin tissue from a lizard. Groups will be given strips of the iso-
lated skin. Place them in Amphibian Ringer in a Petri dish. The skin piece should float on the solution and spread out 
evenly (dermal side is hydrophilic whereas the epidermal side is hydrophobic). Cut the strip lengthwise to prepare 3x3 
mm squares. Each group will need 12 squares.

•	 Preparation of culture plate
Fill the following wells with 200 µl of the following solutions:
	 A1 → D1   No drugs (Ringer solution as “negative” control group)
	 A3 → D3   MSH (0.1 µg/ml) (experimental group)
	 A4 → D4   No drugs (Ringer solution, for reversal action)
	 A6 → D6   Caffeine (10 mM) (experimental group)
	 A7 → D7   No drugs (Ringer solution, for reversal action)

Place skin pieces in A1→D1 and observe the chromatophores under the dissecting scope. Make a note 
of the locations for the epidermal vs. dermal melanophores. The skin piece should float with the super-
ficial side (outside) up.

•	 Skin color index in Anolis carolinensis
	 As you observe the skin color under the dissecting scope, quantify melanosome dispersal using a 
“skin color index” which has a 5-point system; 5 being fully darkened, 1 being green. Since we are ex-
amining a piece of skin consisting of multiple “scales” (small bumps), go through the scales one by one 
and determine the degree of dispersal from 1-5. Then determine the “overall” dispersal for the whole 
piece.
	 In the microscope field you will see several rows of scales. When melanophores are fully aggre-
gated, colors from other chromatophores become more noticeable (green or orange). Some scales may 
show black pigment cells on the surface (epidermal melanophores). Disregard them for MI evaluation, 
as they are irresponsive to drugs.

•	 Hormones and drug treatment
Effects of MSH (0.1 µg/ml) on skin color index

Place a skin piece in each of the wells (A3→D3). Observe the color change for 15 min or until the 
color no longer changes. Record the skin color index every 30 seconds. Once the color is estab-
lished, transfer them to the Ringer solution (A4→D4) and continue to examine the recovery for 15 
min. Compare the temporal pattern between dispersal vs. aggregation.

Effects of caffeine (10 mM) on skin color index
Follow the directions for MSH treatment. Use the wells (A6→D6) for the caffeine treatment, and 
A7→D7 for the recovery process.
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Appendix
1. Fish saline (marine teleost saline, Foster & Hong)

In one liter of deionized water, dissolve the follow-
ing chemicals.

Normal fish saline K+-rich fish saline

NaCl 7.8 g (134 mM) 3.9 g (67 mM)

KCl 0.18 g (2.4 mM) 5.25 g (70 mM)

MgCl2 0.095 0.095 g

NaHCO3	 0.084 g 0.084 g

NaH2PO4 0.006 g 0.006 g

CaCl2	
0.166 g (add this last 

while stirring)
0.166 g (add this last 

while stirring)

2. K+-rich fish saline - replace 50 % NaCl with KCl
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